29.3 Saturazione sul fattore sbagliato

Brown (2015) considera anche il caso opposto, ovvero quello nel quale il ricercatore ipotizza una saturazione spuria. Per i dati in discussione, si può avere la situazione presente.

model4 <- "
  copingm  =~ x1 + x2 + x3 + x4
  socialm  =~ x4 +x5 + x6 + x7 + x8 + x12
  enhancem =~ x9 + x10 + x11
"

Adattiamo il modello ai dati.

fit4 <- cfa(
  model4,
  sample.cov = covs,
  sample.nobs = 500,
  mimic = "mplus"
)

Esaminiamo la soluzione ottenuta.

summary(fit4, fit.measures = TRUE)
#> lavaan 0.6.15 ended normally after 59 iterations
#> 
#>   Estimator                                         ML
#>   Optimization method                           NLMINB
#>   Number of model parameters                        40
#> 
#>   Number of observations                           500
#> 
#> Model Test User Model:
#>                                                       
#>   Test statistic                               212.717
#>   Degrees of freedom                                50
#>   P-value (Chi-square)                           0.000
#> 
#> Model Test Baseline Model:
#> 
#>   Test statistic                              1664.026
#>   Degrees of freedom                                66
#>   P-value                                        0.000
#> 
#> User Model versus Baseline Model:
#> 
#>   Comparative Fit Index (CFI)                    0.898
#>   Tucker-Lewis Index (TLI)                       0.866
#> 
#> Loglikelihood and Information Criteria:
#> 
#>   Loglikelihood user model (H0)             -12010.051
#>   Loglikelihood unrestricted model (H1)     -11903.692
#>                                                       
#>   Akaike (AIC)                               24100.101
#>   Bayesian (BIC)                             24268.685
#>   Sample-size adjusted Bayesian (SABIC)      24141.723
#> 
#> Root Mean Square Error of Approximation:
#> 
#>   RMSEA                                          0.081
#>   90 Percent confidence interval - lower         0.070
#>   90 Percent confidence interval - upper         0.092
#>   P-value H_0: RMSEA <= 0.050                    0.000
#>   P-value H_0: RMSEA >= 0.080                    0.554
#> 
#> Standardized Root Mean Square Residual:
#> 
#>   SRMR                                           0.073
#> 
#> Parameter Estimates:
#> 
#>   Standard errors                             Standard
#>   Information                                 Expected
#>   Information saturated (h1) model          Structured
#> 
#> Latent Variables:
#>                    Estimate  Std.Err  z-value  P(>|z|)
#>   copingm =~                                          
#>     x1                1.000                           
#>     x2                0.741    0.093    7.925    0.000
#>     x3                0.932    0.118    7.906    0.000
#>     x4                0.699    0.117    5.995    0.000
#>   socialm =~                                          
#>     x4                1.000                           
#>     x5                1.725    0.260    6.634    0.000
#>     x6                2.098    0.305    6.879    0.000
#>     x7                2.717    0.401    6.775    0.000
#>     x8                2.619    0.382    6.848    0.000
#>     x12               0.900    0.236    3.818    0.000
#>   enhancem =~                                         
#>     x9                1.000                           
#>     x10               0.638    0.076    8.408    0.000
#>     x11               0.767    0.094    8.153    0.000
#> 
#> Covariances:
#>                    Estimate  Std.Err  z-value  P(>|z|)
#>   copingm ~~                                          
#>     socialm           0.410    0.072    5.663    0.000
#>     enhancem          0.661    0.148    4.456    0.000
#>   socialm ~~                                          
#>     enhancem          0.347    0.089    3.902    0.000
#> 
#> Intercepts:
#>                    Estimate  Std.Err  z-value  P(>|z|)
#>    .x1                0.000    0.092    0.000    1.000
#>    .x2                0.000    0.068    0.000    1.000
#>    .x3                0.000    0.086    0.000    1.000
#>    .x4                0.000    0.063    0.000    1.000
#>    .x5                0.000    0.077    0.000    1.000
#>    .x6                0.000    0.079    0.000    1.000
#>    .x7                0.000    0.111    0.000    1.000
#>    .x8                0.000    0.101    0.000    1.000
#>    .x12               0.000    0.119    0.000    1.000
#>    .x9                0.000    0.120    0.000    1.000
#>    .x10               0.000    0.078    0.000    1.000
#>    .x11               0.000    0.115    0.000    1.000
#>     copingm           0.000                           
#>     socialm           0.000                           
#>     enhancem          0.000                           
#> 
#> Variances:
#>                    Estimate  Std.Err  z-value  P(>|z|)
#>    .x1                3.106    0.230   13.478    0.000
#>    .x2                1.686    0.125   13.449    0.000
#>    .x3                2.698    0.200   13.477    0.000
#>    .x4                0.463    0.069    6.719    0.000
#>    .x5                1.805    0.130   13.886    0.000
#>    .x6                1.378    0.115   12.022    0.000
#>    .x7                3.255    0.248   13.143    0.000
#>    .x8                2.418    0.194   12.455    0.000
#>    .x12               6.740    0.430   15.673    0.000
#>    .x9                3.891    0.436    8.933    0.000
#>    .x10               1.724    0.183    9.435    0.000
#>    .x11               4.662    0.371   12.579    0.000
#>     copingm           1.129    0.218    5.170    0.000
#>     socialm           0.397    0.111    3.566    0.000
#>     enhancem          3.277    0.524    6.258    0.000

È chiaro che il modello model4 è inadeguato. Il problema emerge chiaramente anche esaminando i MI.

modindices(fit4)
#>          lhs op rhs      mi    epc sepc.lv sepc.all sepc.nox
#> 47   copingm =~  x5   0.090  0.036   0.038    0.022    0.022
#> 48   copingm =~  x6   0.554  0.090   0.096    0.054    0.054
#> 49   copingm =~  x7   0.107  0.055   0.059    0.024    0.024
#> 50   copingm =~  x8   3.919 -0.306  -0.325   -0.143   -0.143
#> 51   copingm =~ x12   6.109  0.499   0.530    0.199    0.199
#> 52   copingm =~  x9   0.390 -0.096  -0.102   -0.038   -0.038
#> 53   copingm =~ x10   0.027 -0.016  -0.017   -0.010   -0.010
#> 54   copingm =~ x11   0.823  0.123   0.131    0.051    0.051
#> 55   socialm =~  x1   1.990 -0.398  -0.251   -0.122   -0.122
#> 56   socialm =~  x2   0.638  0.166   0.105    0.069    0.069
#> 57   socialm =~  x3   0.372  0.160   0.101    0.053    0.053
#> 58   socialm =~  x9   0.315 -0.130  -0.082   -0.031   -0.031
#> 59   socialm =~ x10   1.423  0.179   0.113    0.064    0.064
#> 60   socialm =~ x11   0.520 -0.150  -0.094   -0.037   -0.037
#> 61  enhancem =~  x1   1.029  0.067   0.121    0.059    0.059
#> 62  enhancem =~  x2   0.232  0.023   0.042    0.028    0.028
#> 63  enhancem =~  x3   0.153 -0.024  -0.043   -0.023   -0.023
#> 64  enhancem =~  x4   0.745 -0.031  -0.056   -0.040   -0.040
#> 65  enhancem =~  x5   0.343 -0.028  -0.050   -0.029   -0.029
#> 66  enhancem =~  x6   0.103  0.015   0.027    0.015    0.015
#> 67  enhancem =~  x7   2.752 -0.110  -0.198   -0.080   -0.080
#> 68  enhancem =~  x8   0.129 -0.021  -0.038   -0.017   -0.017
#> 69  enhancem =~ x12 116.781  0.916   1.658    0.624    0.624
#> 70        x1 ~~  x2   1.709  0.177   0.177    0.077    0.077
#> 71        x1 ~~  x3   2.273 -0.257  -0.257   -0.089   -0.089
#> 72        x1 ~~  x4   0.850  0.103   0.103    0.086    0.086
#> 73        x1 ~~  x5   0.292 -0.064  -0.064   -0.027   -0.027
#> 74        x1 ~~  x6   0.188 -0.048  -0.048   -0.023   -0.023
#> 75        x1 ~~  x7   0.023 -0.025  -0.025   -0.008   -0.008
#> 76        x1 ~~  x8   0.419 -0.093  -0.093   -0.034   -0.034
#> 77        x1 ~~ x12   0.025 -0.034  -0.034   -0.007   -0.007
#> 78        x1 ~~  x9   0.011  0.020   0.020    0.006    0.006
#> 79        x1 ~~ x10   0.004  0.008   0.008    0.003    0.003
#> 80        x1 ~~ x11   1.804  0.259   0.259    0.068    0.068
#> 81        x2 ~~  x3   0.071 -0.034  -0.034   -0.016   -0.016
#> 82        x2 ~~  x4   2.979 -0.143  -0.143   -0.162   -0.162
#> 83        x2 ~~  x5   2.403  0.135   0.135    0.077    0.077
#> 84        x2 ~~  x6   0.551  0.060   0.060    0.040    0.040
#> 85        x2 ~~  x7   0.457 -0.081  -0.081   -0.035   -0.035
#> 86        x2 ~~  x8   0.012  0.011   0.011    0.006    0.006
#> 87        x2 ~~ x12   0.134 -0.058  -0.058   -0.017   -0.017
#> 88        x2 ~~  x9   1.033  0.145   0.145    0.056    0.056
#> 89        x2 ~~ x10   1.140 -0.100  -0.100   -0.058   -0.058
#> 90        x2 ~~ x11   0.323  0.081   0.081    0.029    0.029
#> 91        x3 ~~  x4   1.472  0.127   0.127    0.113    0.113
#> 92        x3 ~~  x5   0.140  0.041   0.041    0.019    0.019
#> 93        x3 ~~  x6   0.717  0.087   0.087    0.045    0.045
#> 94        x3 ~~  x7   0.317  0.086   0.086    0.029    0.029
#> 95        x3 ~~  x8   3.121 -0.237  -0.237   -0.093   -0.093
#> 96        x3 ~~ x12   0.001  0.006   0.006    0.001    0.001
#> 97        x3 ~~  x9   0.000  0.003   0.003    0.001    0.001
#> 98        x3 ~~ x10   4.165 -0.241  -0.241   -0.111   -0.111
#> 99        x3 ~~ x11   3.806  0.350   0.350    0.099    0.099
#> 100       x4 ~~  x5   0.316 -0.036  -0.036   -0.039   -0.039
#> 101       x4 ~~  x6   0.052 -0.015  -0.015   -0.019   -0.019
#> 102       x4 ~~  x7   1.182  0.099   0.099    0.081    0.081
#> 103       x4 ~~  x8   0.062 -0.021  -0.021   -0.020   -0.020
#> 104       x4 ~~ x12   0.033  0.020   0.020    0.011    0.011
#> 105       x4 ~~  x9   1.418 -0.115  -0.115   -0.086   -0.086
#> 106       x4 ~~ x10   0.914  0.061   0.061    0.068    0.068
#> 107       x4 ~~ x11   0.517 -0.068  -0.068   -0.047   -0.047
#> 108       x5 ~~  x6   0.611  0.073   0.073    0.046    0.046
#> 109       x5 ~~  x7   0.115 -0.045  -0.045   -0.019   -0.019
#> 110       x5 ~~  x8   0.079  0.034   0.034    0.016    0.016
#> 111       x5 ~~ x12   3.265 -0.302  -0.302   -0.087   -0.087
#> 112       x5 ~~  x9   0.203  0.066   0.066    0.025    0.025
#> 113       x5 ~~ x10   0.000  0.002   0.002    0.001    0.001
#> 114       x5 ~~ x11   2.312 -0.224  -0.224   -0.077   -0.077
#> 115       x6 ~~  x7   2.239 -0.200  -0.200   -0.094   -0.094
#> 116       x6 ~~  x8   0.073  0.033   0.033    0.018    0.018
#> 117       x6 ~~ x12   0.478  0.109   0.109    0.036    0.036
#> 118       x6 ~~  x9   1.251 -0.153  -0.153   -0.066   -0.066
#> 119       x6 ~~ x10   0.784  0.079   0.079    0.051    0.051
#> 120       x6 ~~ x11   0.370  0.083   0.083    0.033    0.033
#> 121       x7 ~~  x8   1.644  0.219   0.219    0.078    0.078
#> 122       x7 ~~ x12   0.433 -0.152  -0.152   -0.032   -0.032
#> 123       x7 ~~  x9   0.005 -0.015  -0.015   -0.004   -0.004
#> 124       x7 ~~ x10   1.836 -0.179  -0.179   -0.076   -0.076
#> 125       x7 ~~ x11   0.348 -0.119  -0.119   -0.031   -0.031
#> 126       x8 ~~ x12   2.680 -0.335  -0.335   -0.083   -0.083
#> 127       x8 ~~  x9   0.676  0.147   0.147    0.048    0.048
#> 128       x8 ~~ x10   0.337  0.068   0.068    0.033    0.033
#> 129       x8 ~~ x11   3.437 -0.330  -0.330   -0.098   -0.098
#> 130      x12 ~~  x9   7.051  0.713   0.713    0.139    0.139
#> 131      x12 ~~ x10   6.960  0.465   0.465    0.136    0.136
#> 132      x12 ~~ x11  68.717  2.238   2.238    0.399    0.399
#> 133       x9 ~~ x10   0.081  0.138   0.138    0.053    0.053
#> 134       x9 ~~ x11   0.166  0.209   0.209    0.049    0.049
#> 135      x10 ~~ x11   0.423 -0.211  -0.211   -0.075   -0.075

Il MI relativo alla saturazione di x12 su enhancem è uguale a 116.781. Chiaramente, in una revisione del modello, questo problema dovrebbe deve essere affrontato.

References

Brown, Timothy A. 2015. Confirmatory Factor Analysis for Applied Research. Guilford publications.