Bibliografia#

[AH19]

Jim Albert and Jingchen Hu. Probability and Bayesian Modeling. Chapman and Hall/CRC, 2019.

[AD00]

Craig A Anderson and Karen E Dill. Video games and aggressive thoughts, feelings, and behavior in the laboratory and in life. Journal of Personality and Social Psychology, 78(4):772–790, 2000.

[AG22]

J Scott Armstrong and Kesten C Green. The Scientific Method: A Guide to Finding Useful Knowledge. Cambridge University Press, 2022.

[Bak16]

Monya Baker. Reproducibility crisis. Nature, 533(26):353–66, 2016.

[BC23]

Beth Baribault and Anne GE Collins. Troubleshooting bayesian cognitive models. Psychological Methods, 2023.

[Bet16]

Michael Betancourt. Diagnosing suboptimal cotangent disintegrations in hamiltonian monte carlo. arXiv preprint arXiv:1604.00695, 2016.

[BHOConnell75]

Peter J Bickel, Eugene A Hammel, and J William O'Connell. Sex bias in graduate admissions: data from berkeley: measuring bias is harder than is usually assumed, and the evidence is sometimes contrary to expectation. Science, 187(4175):398–404, 1975.

[Bor14]

Emile Borel. Introduction Géométrique. G. Villars, New York, 1914.

[Box80]

George EP Box. Sampling and bayes’ inference in scientific modelling and robustness. Journal of the Royal Statistical Society Series A: Statistics in Society, 143(4):383–404, 1980.

[BGK+15]

Kay H Brodersen, Fabian Gallusser, Jim Koehler, Nicolas Remy, and Steven L Scott. Inferring causal impact using bayesian structural time-series models. Annals of Applied Statistics, 9:247–274, 2015.

[Bro03]

Stephen P Brooks. Bayesian computation: a statistical revolution. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 361(1813):2681–2697, 2003.

[BLOHaganP19]

Naomi C Brownstein, Thomas A Louis, Anthony O’Hagan, and Jane Pendergast. The role of expert judgment in statistical inference and evidence-based decision-making. The American Statistician, 73(sup1):56–68, 2019.

[CGH+17]

Bob Carpenter, Andrew Gelman, Matthew D Hoffman, Daniel Lee, Ben Goodrich, Michael Betancourt, Marcus Brubaker, Jiqiang Guo, Peter Li, and Allen Riddell. Stan: a probabilistic programming language. Journal of statistical software, 76(1):1–32, 2017.

[Cla21]

Aubrey Clayton. Bernoulli's Fallacy: Statistical Illogic and the Crisis of Modern Science. Columbia University Press, 2021.

[DF17]

Bruno De Finetti. Theory of probability: A critical introductory treatment. Volume 6. John Wiley & Sons, 2017.

[dSVSW20]

Van Rens de Schoot, Duco Veen, Laurent Smeets, and Sonja Winter. A tutorial on using the wambs checklist to avoid the misuse of bayesian statistics. 2020.

[Dow21]

Allen B Downey. Think Bayes. " O'Reilly Media, Inc.", 2021.

[DKPR87]

Simon Duane, Anthony D Kennedy, Brian J Pendleton, and Duncan Roweth. Hybrid monte carlo. Physics letters B, 195(2):216–222, 1987.

[DAgostinoMGB24]

Lucy D’Agostino McGowan, Travis Gerke, and Malcolm Barrett. Causal inference is not just a statistics problem. Journal of Statistics and Data Science Education, pages 1–6, 2024.

[EGD+18]

Alexander Etz, Quentin F Gronau, Fabian Dablander, Peter A Edelsbrunner, and Beth Baribault. How to become a bayesian in eight easy steps: an annotated reading list. Psychonomic bulletin & review, 25(1):219–234, 2018.

[Fis86]

Peter C Fishburn. The axioms of subjective probability. Statistical Science, 1(3):335–345, 1986.

[GDLB+08]

David R Gagnon, Susan Doron-LaMarca, Margret Bell, Timothy J O'Farrell, and Casey T Taft. Poisson regression for modeling count and frequency outcomes in trauma research. Journal of Traumatic Stress, 21(5):448–454, 2008.

[Gel16]

Andrew Gelman. Commentary on “crisis in science? or crisis in statistics! mixed messages in statistics with impact on science”. Journal of Statistical Research, 48-50(1):11–12, 2016.

[GC14]

Andrew Gelman and John Carlin. Beyond power calculations: assessing type s (sign) and type m (magnitude) errors. Perspectives on Psychological Science, 9(6):641–651, 2014.

[GCSR95]

Andrew Gelman, John B Carlin, Hal S Stern, and Donald B Rubin. Bayesian data analysis. Chapman and Hall/CRC, 1995.

[GHV20]

Andrew Gelman, Jennifer Hill, and Aki Vehtari. Regression and other stories. Cambridge University Press, 2020.

[GS13]

Andrew Gelman and Cosma Rohilla Shalizi. Philosophy and the practice of bayesian statistics. British Journal of Mathematical and Statistical Psychology, 66(1):8–38, 2013.

[GSB17]

Andrew Gelman, Daniel Simpson, and Michael Betancourt. The prior can often only be understood in the context of the likelihood. Entropy, 19(10):555, 2017.

[GVS+20]

Andrew Gelman, Aki Vehtari, Daniel Simpson, Charles C Margossian, Bob Carpenter, Yuling Yao, Lauren Kennedy, Jonah Gabry, Paul-Christian Bürkner, and Martin Modrák. Bayesian workflow. arXiv preprint arXiv:2011.01808, 2020.

[GG84]

Stuart Geman and Donald Geman. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Transactions on pattern analysis and machine intelligence, 6:721–741, 1984.

[Gut21]

John V Guttag. Introduction to computation and programming using Python. Mit Press, 2021.

[Has70]

W. Keith Hastings. Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57(1):97–109, 1970.

[HMRW14]

Rink Hoekstra, Richard D Morey, Jeffrey N Rouder, and Eric-Jan Wagenmakers. Robust misinterpretation of confidence intervals. Psychonomic Bulletin & Review, 21(5):1157–1164, 2014.

[HG+14]

Matthew D Hoffman, Andrew Gelman, and others. The no-u-turn sampler: adaptively setting path lengths in hamiltonian monte carlo. Journal of Machine Learning Research, 15(1):1593–1623, 2014.

[HU06]

Colin Howson and Peter Urbach. Scientific reasoning: the Bayesian approach. Open Court Publishing, 2006.

[Jay03]

Edwin T Jaynes. Probability theory: The logic of science. Cambridge University Press, 2003.

[JOD22]

Alicia A. Johnson, Miles Ott, and Mine Dogucu. Bayes Rules! An Introduction to Bayesian Modeling with R. CRC Press, 2022.

[Kap23]

David Kaplan. Bayesian statistics for the social sciences. Guilford Publications, 2023.

[Kru14]

John Kruschke. Doing Bayesian data analysis: A tutorial with R, JAGS, and Stan. Academic Press, 2014.

[Lin13]

Dennis V Lindley. Understanding uncertainty. John Wiley & Sons, 2013.

[LG17]

Eric Loken and Andrew Gelman. Measurement error and the replication crisis. Science, 355(6325):584–585, 2017.

[LubkeGHS20]

Karsten Lübke, Matthias Gehrke, Jörg Horst, and Gero Szepannek. Why we should teach causal inference: examples in linear regression with simulated data. Journal of Statistics Education, 28(2):133–139, 2020.

[Mar24]

Osvaldo Martin. Bayesian analysis with python. Packt Publishing Ltd, 2024.

[MKL22]

Osvaldo A Martin, Ravin Kumar, and Junpeng Lao. Bayesian Modeling and Computation in Python. CRC Press, 2022.

[McE20]

Richard McElreath. Statistical rethinking: A Bayesian course with examples in R and Stan. CRC Press, Boca Raton, Florida, 2nd edition edition, 2020.

[McK22]

Wes McKinney. Python for Data Analysis. " O'Reilly Media, Inc.", 2022.

[MSS16]

S. A. Mehr, L. A. Song, and E. S. Spelke. For 5-month-old infants, melodies are social. Psychological Science, 27(4):486–501, 2016.

[MRR+53]

Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Augusta H. Teller, and Edward Teller. Equation of state calculations by fast computing machines. The Journal of Chemical Physics, 21(6):1087–1092, 1953.

[Mil63]

Stanley Milgram. Behavioral study of obedience. The Journal of Abnormal and Social Psychology, 67(4):371–378, 1963.

[Nuz14]

Regina Nuzzo. Statistical errors. Nature, 506(7487):150–152, 2014.

[OHagan19]

Anthony O'Hagan. Expert knowledge elicitation: subjective but scientific. The American Statistician, 73(sup1):69–81, 2019.

[Pea09]

Judea Pearl. Causality. Cambridge University Press, 2009.

[Pre09]

S James Press. Subjective and objective Bayesian statistics: Principles, models, and applications. John Wiley & Sons, 2009.

[RP91]

Michael L Radelet and Glenn L Pierce. Choosing those who will die: race and the death penalty in florida. Florida Law Review, 43:1–34, 1991.

[Ram26]

Frank P Ramsey. Truth and probability. In Readings in Formal Epistemology: Sourcebook, pages 21–45. Springer, 1926.

[Roh18]

Julia M Rohrer. Thinking clearly about correlations and causation: graphical causal models for observational data. Advances in methods and practices in psychological science, 1(1):27–42, 2018.

[RRSB98]

Linda Rosa, Emily Rosa, Larry Sarner, and Stephen Barrett. A close look at therapeutic touch. Jama, 279(13):1005–1010, 1998.

[Sah13]

Marshall Sahlins. Stone age economics. Routledge, 2013.

[Sim51]

Edward H Simpson. The interpretation of interaction in contingency tables. Journal of the Royal Statistical Society: Series B (Methodological), 13(2):238–241, 1951.

[Ste46]

Stanley Smith Stevens. On the theory of scales of measurement. Science, 103(2684):677–680, 1946.

[Unp22]

José Unpingco. Python for probability, statistics, and machine learning. Volume 1. Springer, 2022.

[VDSWR+17]

Rens Van De Schoot, Sonja D Winter, Oisín Ryan, Mariëlle Zondervan-Zwijnenburg, and Sarah Depaoli. A systematic review of bayesian articles in psychology: the last 25 years. Psychological Methods, 22(2):217–239, 2017.

[VGS+21]

Aki Vehtari, Andrew Gelman, Daniel Simpson, Bob Carpenter, and Paul-Christian Bürkner. Rank-normalization, folding, and localization: an improved r ̂ for assessing convergence of mcmc (with discussion). Bayesian analysis, 16(2):667–718, 2021.

[WDS18]

Eric-Jan Wagenmakers, Gilles Dutilh, and Alexandra Sarafoglou. The creativity-verification cycle in psychological science: new methods to combat old idols. Perspectives on Psychological Science, 13(4):418–427, 2018.

[WM22]

Andrew Ward and Traci Mann. Control yourself: broad implications of narrowed attention. Perspectives on Psychological Science, 17(6):1692–1703, 2022.

[WL16]

Ronald L Wasserstein and Nicole A Lazar. The ASA's statement on p-values: context, process, and purpose. The American Statistician, 70(2):129–133, 2016.

[WR73]

GN Wilkinson and CE Rogers. Symbolic description of factorial models for analysis of variance. Journal of the Royal Statistical Society Series C: Applied Statistics, 22(3):392–399, 1973.

[Yar22]

Tal Yarkoni. The generalizability crisis. Behavioral and Brain Sciences, 45:e1, 2022.

[ZBR19]

Ulrike Zetsche, Paul-Christian Buerkner, and Babette Renneberg. Future expectations in clinical depression: biased or realistic? Journal of Abnormal Psychology, 128(7):678, 2019.

[ZHM+23]

Sam Zhang, Patrick R Heck, Michelle N Meyer, Christopher F Chabris, Daniel G Goldstein, and Jake M Hofman. An illusion of predictability in scientific results: even experts confuse inferential uncertainty and outcome variability. Proceedings of the National Academy of Sciences, 120(33):e2302491120, 2023.