Bibliografia
Allen, M. J., & Yen, W. M. (2001). Introduction to measurement
theory. Waveland Press.
Alphen, T. van, Jak, S., Jansen in de Wal, J., Schuitema, J., &
Peetsma, T. (2022). Determining reliability of daily measures: An
illustration with data on teacher stress. Applied Measurement in
Education, 35(1), 63–79.
American Educational Research Association, American Psychological
Association, & National Council on Measurement in Education. (2014).
Standards for educational and psychological testing. American
Educational Research Association.
Arias, A. (2024). A short tutorial on validation in educational and
psychological assessment. Teaching Quantitative Methods
Vignettes, 20(3).
Bandalos, D. L. (2018). Measurement theory and applications for the
social sciences. Guilford Publications.
Barbeau, K., Boileau, K., Sarr, F., & Smith, K. (2019). Path
analysis in mplus: A tutorial using a conceptual model of psychological
and behavioral antecedents of bulimic symptoms in young adults. The
Quantitative Methods for Psychology, 15(1), 38–53.
Barrett, P. (2007). Structural equation modelling: Adjudging model fit.
Personality and Individual Differences, 42(5),
815–824.
Bates, D., Mächler, M., Bolker, B., & Walker, S. (2014). Fitting
linear mixed-effects models using lme4. arXiv Preprint
arXiv:1406.5823.
Blampied, N. M. (2022). Reliable change and the reliable change index:
Still useful after all these years? The Cognitive Behaviour
Therapist, 15, e50.
Blume, F., Buhr, L., Kuehnhausen, J., Köpke, R., Weber, L. A.,
Fallgatter, A. J., Ethofer, T., & Gawrilow, C. (2020). Validation of
the self-report version of the german strengths and weaknesses of ADHD
symptoms and normal behavior scale (SWAN-DE-SB). Assessment,
10731911241236699.
Bollen, K., & Lennox, R. (1991). Conventional wisdom on measurement:
A structural equation perspective. Psychological Bulletin,
110(2), 305–314.
Bonifay, W., Winter, S. D., Skoblow, H. F., & Watts, A. L. (2024).
Good fit is weak evidence of replication: Increasing rigor through prior
predictive similarity checking. Assessment, 10731911241234118.
Brown, A. (2023). Psychometrics in exercises using r and RStudio:
Textbook and data resource. https://bookdown.org/annabrown/psychometricsR
Brown, T. A. (2015). Confirmatory factor analysis for applied
research. Guilford publications.
Buchberger, E. S., Ngo, C. T., Peikert, A., Brandmaier, A. M., &
Werkle-Bergner, M. (2024). Estimating statistical power for structural
equation models in developmental cognitive science: A tutorial in r:
Power simulation for SEMs. Behavior Research Methods, 1–18.
Byrne, B. M. (2013). Structural equation modeling with mplus: Basic
concepts, applications, and programming. routledge.
Caudek, C., & Luccio, R. (2001). Statistica per psicologi
(III rist. 2023, Vol. 11, p. 320). Laterza.
Charter, R. A. (1996). Revisiting the standard errors of measurement,
estimate, and prediction and their application to test scores.
Perceptual and Motor Skills, 82(3), 1139–1144.
Chen, D.-G., & Yung, Y.-F. (2023). Structural equation modeling
using r/SAS: A step-by-step approach with real data analysis. CRC
Press.
Clement, L. M., & Bradley-Garcia, M. (2022). A step-by-step tutorial
for performing a moderated mediation analysis using PROCESS. The
Quantitative Methods for Psychology, 18(3), 258–271.
Debelak, R., Strobl, C., & Zeigenfuse, M. D. (2022). An
introduction to the rasch model with examples in r. CRC Press.
Dudek, F. J. (1979). The continuing misinterpretation of the standard
error of measurement. Psychological Bulletin, 86(2),
335--337.
Grimm, K. J., Ram, N., & Estabrook, R. (2016). Growth modeling:
Structural equation and multilevel modeling approaches. Guilford
Publications.
Hargrave, T. D., & Hammer, M. Y. (2016). Restoration of
relationships after affairs. In Techniques for the couple
therapist (pp. 190–193). Routledge.
Haslbeck, J., & Bork, R. van. (2022). Estimating the number of
factors in exploratory factor analysis via out-of-sample prediction
errors. Psychological Methods.
Hayduk, L. A. (2014). Shame for disrespecting evidence: The personal
consequences of insufficient respect for structural equation model
testing. BMC Medical Research Methodology, 14, 1–10.
Hu, L., & Bentler, P. M. (1998). Fit indices in covariance structure
modeling: Sensitivity to underparameterized model misspecification.
Psychological Methods, 3(4), 424--453.
John, O. P., & Benet-Martinez, V. (2014). Measurement: Reliability,
construct validation, and scale construction. In H. T. Reis & C. M.
Judd (Eds.), Handbook of research methods in social and personality
psychology (2nd ed., pp. 473–503). Cambridge University Press.
Kan, K.-J., Maas, H. L. van der, & Levine, S. Z. (2019). Extending
psychometric network analysis: Empirical evidence against g in favor of
mutualism? Intelligence, 73, 52–62.
Kline, P. (2013). Handbook of psychological testing. Routledge.
Kline, R. B. (2023). Principles and practice of structural equation
modeling. Guilford publications.
Komaroff, E. (1997). Effect of simultaneous violations of essential/g=
t/-equivalence and uncorrelated error on coefficient/g= a. Applied
Psychological Measurement, 21(4), 337–348.
Little, T. D. (2023). Longitudinal structural equation
modeling. Guilford Press.
Lord, F. M., & Novick, M. R. (1968). Statistical theories of
mental test scores. Addison-Wesley.
Marsh, H. W., Morin, A. J., Parker, P. D., & Kaur, G. (2014).
Exploratory structural equation modeling: An integration of the best
features of exploratory and confirmatory factor analysis. Annual
Review of Clinical Psychology, 10(1), 85–110.
Marsh, H., & Alamer, A. (2024). When and how to use set-exploratory
structural equation modelling to test structural models: A tutorial
using the r package lavaan. British Journal of Mathematical and
Statistical Psychology.
Mauro, R. (1990). Understanding LOVE (left out
variables error): A method for estimating the effects of omitted
variables. Psychological Bulletin, 108(2),
314–329.
McDonald, R. P. (2013). Test theory: A unified treatment.
Psychology Press.
Nunnally, J. C. (1994). Psychometric theory. McGraw-Hill.
Petersen, I. T. (2024). Principles of psychological assessment: With
applied examples in r. CRC Press.
Randall, J. (2021). “Color-neutral” is not a thing:
Redefining construct definition and representation through a
justice-oriented critical antiracist lens. Educational Measurement:
Issues and Practice, 40(4), 82–90.
Randall, J., Slomp, D., Poe, M., & Oliveri, E. (2023). Disrupting
white supremacy in assessment: Toward a justice-oriented, antiracist
validity framework. In Twin pandemics (pp. 78–86). Routledge.
Rencher, A. (2002). Methods of multivariate analysis. 2002.
Wiley Publications.
Reynolds, C. R., & Livingston, R. (2021). Mastering modern
psychological testing. Springer.
Roberts, S., & Pashler, H. (2000). How persuasive is a good fit? A
comment on theory testing. Psychological Review,
107(2), 358–367.
Rosseel, Y. (2020). Small sample solutions for structural equation
modeling. In Small sample size solutions: A guide for applied
researchers and practitioners (pp. 226–238). Routledge.
Saqr, M., & López-Pernas, S. (2024). Learning analytics methods
and tutorials: A practical guide using r. Springer Nature.
Spearman, C. (1904). General intelligence objectively determined and
measured. American Journal of Psychology, 15, 201–293.
Svetina, D., Rutkowski, L., & Rutkowski, D. (2020). Multiple-group
invariance with categorical outcomes using updated guidelines: An
illustration using m plus and the lavaan/semtools packages.
Structural Equation Modeling: A Multidisciplinary Journal,
27(1), 111–130.
Timmerman, M. E., Voncken, L., & Albers, C. J. (2021). A tutorial on
regression-based norming of psychological tests with GAMLSS.
Psychological Methods, 26(3), 357–373.
Waller, N. G., & Meehl, P. E. (2002). Risky tests, verisimilitude,
and path analysis. Psychological Methods, 7(3),
323–337. https://doi.org/10.1037/1082-989X.7.3.323
Wechsler, D. (2008). Wechsler adult intelligence scale–fourth edition
(WAIS–IV). San Antonio, TX: NCS Pearson, 22(498),
816–827.
Wind, S. A. (2017). An instructional module on mokken scale analysis.
Educational Measurement: Issues and Practice, 36(2),
50–66.
Wind, S. A. (2024). Item-explanatory mokken scale analysis: Using
nonparametric item response theory to explore item attributes. The
Journal of Experimental Education, 1–21.
Wu, H., & Estabrook, R. (2016). Identification of confirmatory
factor analysis models of different levels of invariance for ordered
categorical outcomes. Psychometrika, 81(4), 1014–1045.
Xia, Y., & Yang, Y. (2019). RMSEA, CFI, and TLI in structural
equation modeling with ordered categorical data: The story they tell
depends on the estimation methods. Behavior Research Methods,
51(1), 409–428.