Bibliografia

Allen, M. J., & Yen, W. M. (2001). Introduction to measurement theory. Waveland Press.
Alphen, T. van, Jak, S., Jansen in de Wal, J., Schuitema, J., & Peetsma, T. (2022). Determining reliability of daily measures: An illustration with data on teacher stress. Applied Measurement in Education, 35(1), 63–79.
American Educational Research Association, American Psychological Association, & National Council on Measurement in Education. (2014). Standards for educational and psychological testing. American Educational Research Association.
Arias, A. (2024). A short tutorial on validation in educational and psychological assessment. Teaching Quantitative Methods Vignettes, 20(3).
Bandalos, D. L. (2018). Measurement theory and applications for the social sciences. Guilford Publications.
Barbeau, K., Boileau, K., Sarr, F., & Smith, K. (2019). Path analysis in mplus: A tutorial using a conceptual model of psychological and behavioral antecedents of bulimic symptoms in young adults. The Quantitative Methods for Psychology, 15(1), 38–53.
Barrett, P. (2007). Structural equation modelling: Adjudging model fit. Personality and Individual Differences, 42(5), 815–824.
Bates, D., Mächler, M., Bolker, B., & Walker, S. (2014). Fitting linear mixed-effects models using lme4. arXiv Preprint arXiv:1406.5823.
Blampied, N. M. (2022). Reliable change and the reliable change index: Still useful after all these years? The Cognitive Behaviour Therapist, 15, e50.
Blume, F., Buhr, L., Kuehnhausen, J., Köpke, R., Weber, L. A., Fallgatter, A. J., Ethofer, T., & Gawrilow, C. (2020). Validation of the self-report version of the german strengths and weaknesses of ADHD symptoms and normal behavior scale (SWAN-DE-SB). Assessment, 10731911241236699.
Bollen, K., & Lennox, R. (1991). Conventional wisdom on measurement: A structural equation perspective. Psychological Bulletin, 110(2), 305–314.
Bonifay, W., Winter, S. D., Skoblow, H. F., & Watts, A. L. (2024). Good fit is weak evidence of replication: Increasing rigor through prior predictive similarity checking. Assessment, 10731911241234118.
Brown, A. (2023). Psychometrics in exercises using r and RStudio: Textbook and data resource. https://bookdown.org/annabrown/psychometricsR
Brown, T. A. (2015). Confirmatory factor analysis for applied research. Guilford publications.
Buchberger, E. S., Ngo, C. T., Peikert, A., Brandmaier, A. M., & Werkle-Bergner, M. (2024). Estimating statistical power for structural equation models in developmental cognitive science: A tutorial in r: Power simulation for SEMs. Behavior Research Methods, 1–18.
Byrne, B. M. (2013). Structural equation modeling with mplus: Basic concepts, applications, and programming. routledge.
Caudek, C., & Luccio, R. (2001). Statistica per psicologi (III rist. 2023, Vol. 11, p. 320). Laterza.
Charter, R. A. (1996). Revisiting the standard errors of measurement, estimate, and prediction and their application to test scores. Perceptual and Motor Skills, 82(3), 1139–1144.
Chen, D.-G., & Yung, Y.-F. (2023). Structural equation modeling using r/SAS: A step-by-step approach with real data analysis. CRC Press.
Clement, L. M., & Bradley-Garcia, M. (2022). A step-by-step tutorial for performing a moderated mediation analysis using PROCESS. The Quantitative Methods for Psychology, 18(3), 258–271.
Debelak, R., Strobl, C., & Zeigenfuse, M. D. (2022). An introduction to the rasch model with examples in r. CRC Press.
Dudek, F. J. (1979). The continuing misinterpretation of the standard error of measurement. Psychological Bulletin, 86(2), 335--337.
Grimm, K. J., Ram, N., & Estabrook, R. (2016). Growth modeling: Structural equation and multilevel modeling approaches. Guilford Publications.
Hargrave, T. D., & Hammer, M. Y. (2016). Restoration of relationships after affairs. In Techniques for the couple therapist (pp. 190–193). Routledge.
Haslbeck, J., & Bork, R. van. (2022). Estimating the number of factors in exploratory factor analysis via out-of-sample prediction errors. Psychological Methods.
Hayduk, L. A. (2014). Shame for disrespecting evidence: The personal consequences of insufficient respect for structural equation model testing. BMC Medical Research Methodology, 14, 1–10.
Hu, L., & Bentler, P. M. (1998). Fit indices in covariance structure modeling: Sensitivity to underparameterized model misspecification. Psychological Methods, 3(4), 424--453.
John, O. P., & Benet-Martinez, V. (2014). Measurement: Reliability, construct validation, and scale construction. In H. T. Reis & C. M. Judd (Eds.), Handbook of research methods in social and personality psychology (2nd ed., pp. 473–503). Cambridge University Press.
Kan, K.-J., Maas, H. L. van der, & Levine, S. Z. (2019). Extending psychometric network analysis: Empirical evidence against g in favor of mutualism? Intelligence, 73, 52–62.
Kline, P. (2013). Handbook of psychological testing. Routledge.
Kline, R. B. (2023). Principles and practice of structural equation modeling. Guilford publications.
Komaroff, E. (1997). Effect of simultaneous violations of essential/g= t/-equivalence and uncorrelated error on coefficient/g= a. Applied Psychological Measurement, 21(4), 337–348.
Little, T. D. (2023). Longitudinal structural equation modeling. Guilford Press.
Lord, F. M., & Novick, M. R. (1968). Statistical theories of mental test scores. Addison-Wesley.
Marsh, H. W., Morin, A. J., Parker, P. D., & Kaur, G. (2014). Exploratory structural equation modeling: An integration of the best features of exploratory and confirmatory factor analysis. Annual Review of Clinical Psychology, 10(1), 85–110.
Marsh, H., & Alamer, A. (2024). When and how to use set-exploratory structural equation modelling to test structural models: A tutorial using the r package lavaan. British Journal of Mathematical and Statistical Psychology.
Mauro, R. (1990). Understanding LOVE (left out variables error): A method for estimating the effects of omitted variables. Psychological Bulletin, 108(2), 314–329.
McDonald, R. P. (2013). Test theory: A unified treatment. Psychology Press.
Nunnally, J. C. (1994). Psychometric theory. McGraw-Hill.
Petersen, I. T. (2024). Principles of psychological assessment: With applied examples in r. CRC Press.
Randall, J. (2021). “Color-neutral” is not a thing: Redefining construct definition and representation through a justice-oriented critical antiracist lens. Educational Measurement: Issues and Practice, 40(4), 82–90.
Randall, J., Slomp, D., Poe, M., & Oliveri, E. (2023). Disrupting white supremacy in assessment: Toward a justice-oriented, antiracist validity framework. In Twin pandemics (pp. 78–86). Routledge.
Rencher, A. (2002). Methods of multivariate analysis. 2002. Wiley Publications.
Reynolds, C. R., & Livingston, R. (2021). Mastering modern psychological testing. Springer.
Roberts, S., & Pashler, H. (2000). How persuasive is a good fit? A comment on theory testing. Psychological Review, 107(2), 358–367.
Rosseel, Y. (2020). Small sample solutions for structural equation modeling. In Small sample size solutions: A guide for applied researchers and practitioners (pp. 226–238). Routledge.
Saqr, M., & López-Pernas, S. (2024). Learning analytics methods and tutorials: A practical guide using r. Springer Nature.
Spearman, C. (1904). General intelligence objectively determined and measured. American Journal of Psychology, 15, 201–293.
Svetina, D., Rutkowski, L., & Rutkowski, D. (2020). Multiple-group invariance with categorical outcomes using updated guidelines: An illustration using m plus and the lavaan/semtools packages. Structural Equation Modeling: A Multidisciplinary Journal, 27(1), 111–130.
Timmerman, M. E., Voncken, L., & Albers, C. J. (2021). A tutorial on regression-based norming of psychological tests with GAMLSS. Psychological Methods, 26(3), 357–373.
Waller, N. G., & Meehl, P. E. (2002). Risky tests, verisimilitude, and path analysis. Psychological Methods, 7(3), 323–337. https://doi.org/10.1037/1082-989X.7.3.323
Wechsler, D. (2008). Wechsler adult intelligence scale–fourth edition (WAIS–IV). San Antonio, TX: NCS Pearson, 22(498), 816–827.
Wind, S. A. (2017). An instructional module on mokken scale analysis. Educational Measurement: Issues and Practice, 36(2), 50–66.
Wind, S. A. (2024). Item-explanatory mokken scale analysis: Using nonparametric item response theory to explore item attributes. The Journal of Experimental Education, 1–21.
Wu, H., & Estabrook, R. (2016). Identification of confirmatory factor analysis models of different levels of invariance for ordered categorical outcomes. Psychometrika, 81(4), 1014–1045.
Xia, Y., & Yang, Y. (2019). RMSEA, CFI, and TLI in structural equation modeling with ordered categorical data: The story they tell depends on the estimation methods. Behavior Research Methods, 51(1), 409–428.