Bibliografia

Albert, J., & Hu, J. (2019). Probability and bayesian modeling. CRC Press.
Alexander, R. (2023). Telling stories with data: With applications in r. Chapman; Hall/CRC.
Altmejd, A., Dreber, A., Forsell, E., Huber, J., Imai, T., Johannesson, M., Kirchler, M., Nave, G., & Camerer, C. (2019). Predicting the replicability of social science lab experiments. PloS One, 14(12), e0225826.
Angrist, J. D., & Pischke, J.-S. (2010). The credibility revolution in empirical economics: How better research design is taking the con out of econometrics. Journal of Economic Perspectives, 24(2), 3–30.
Aungle, P., & Langer, E. (2023). Physical healing as a function of perceived time. Scientific Reports, 13(1), 22432.
Baker, M. (2016a). 1,500 scientists lift the lid on reproducibility. Nature, 533(7604).
Baker, M. (2016b). Reproducibility crisis. Nature, 533(7604), 452–454.
Barber, D. (2012). Bayesian reasoning and machine learning. Cambridge University Press.
Bargh, J. A., Chen, M., & Burrows, L. (1996). Automaticity of social behavior: Direct effects of trait construct and stereotype activation on action. Journal of Personality and Social Psychology, 71(2), 230–244.
Baribault, B., & Collins, A. G. (2023). Troubleshooting bayesian cognitive models. Psychological Methods.
Bem, D. J. (2011). Feeling the future: Experimental evidence for anomalous retroactive influences on cognition and affect. Journal of Personality and Social Psychology, 100(3), 407–425.
Benjamin, D. J., Berger, J. O., Johannesson, M., Nosek, B. A., Wagenmakers, E.-J., Berk, R., Bollen, K. A., Brembs, B., Brown, L., Camerer, C., et al. (2018). Redefine statistical significance. Nature Human Behaviour, 2(1), 6–10.
Betancourt, M. (2016). Diagnosing suboptimal cotangent disintegrations in hamiltonian monte carlo. arXiv Preprint arXiv:1604.00695.
Bishop, D. (2019). The psychology of experimental psychologists: Overcoming cognitive constraints to improve research.
Bland, J. M., & Altman, D. G. (2011). Comparisons within randomised groups can be very misleading. Bmj, 342.
Blei, D. M. (2014). Build, compute, critique, repeat: Data analysis with latent variable models. Annual Review of Statistics and Its Application, 1(1), 203–232.
Boden, M. A. (2008). An evaluation of computational modeling in cognitive science.
Borel, E. (1914). Introduction géométrique. G. Villars, New York.
Bornstein, A. M., & Norman, K. A. (2017). Reinstated episodic context guides sampling-based decisions for reward. Nature Neuroscience, 20(7), 997–1003.
Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S., & Cohen, J. D. (2001). Conflict monitoring and cognitive control. Psychological Review, 108(3), 624–652.
Box, G. E. (1976). Science and statistics. Journal of the American Statistical Association, 71(356), 791–799.
Browning, M., Behrens, T. E., Jocham, G., O’reilly, J. X., & Bishop, S. J. (2015). Anxious individuals have difficulty learning the causal statistics of aversive environments. Nature Neuroscience, 18(4), 590–596.
Bruton, S. V., Medlin, M., Brown, M., & Sacco, D. F. (2020). Personal motivations and systemic incentives: Scientists on questionable research practices. Science and Engineering Ethics, 26(3), 1531–1547.
Buchanan, E. M., Crain, S. E., Cunningham, A. L., Johnson, H. R., Stash, H., Papadatou-Pastou, M., Isager, P. M., Carlsson, R., & Aczel, B. (2021). Getting started creating data dictionaries: How to create a shareable data set. Advances in Methods and Practices in Psychological Science, 4(1), 2515245920928007.
Bulbulia, J. A. (2023). A workflow for causal inference in cross-cultural psychology. Religion, Brain & Behavior, 13(3), 291–306.
Bürkner, P.-C. (2024). The brms book: Applied bayesian regression modelling using r and stan (early draft). https://paulbuerkner.com/software/brms-book
Butler, R. C. (2022). Popularity leads to bad habits: Alternatives to “the statistics” routine of significance,“alphabet soup” and dynamite plots. In Annals of Applied Biology (No. 2; Vol. 180, pp. 182–195). Wiley Online Library.
Button, K. S., Ioannidis, J. P., Mokrysz, C., Nosek, B. A., Flint, J., Robinson, E. S., & Munafò, M. R. (2013). Power failure: Why small sample size undermines the reliability of neuroscience. Nature Reviews Neuroscience, 14(5), 365–376.
Byrnes, J. E., & Dee, L. E. (2024). Causal inference with observational data and unobserved confounding variables. bioRxiv, 2024–2002.
Calin-Jageman, R. J., & Caldwell, T. L. (2014). Replication of the superstition and performance study by damisch, stoberock, and mussweiler (2010). Social Psychology.
Camerer, C. F., Dreber, A., Holzmeister, F., Ho, T.-H., Huber, J., Johannesson, M., Kirchler, M., Nave, G., Nosek, B. A., Pfeiffer, T., et al. (2018). Evaluating the replicability of social science experiments in nature and science between 2010 and 2015. Nature Human Behaviour, 2(9), 637–644.
Carlin, J. B., & Moreno-Betancur, M. (2023). On the uses and abuses of regression models: A call for reform of statistical practice and teaching. arXiv Preprint arXiv:2309.06668.
Caudek, C., Lorenzino, M., & Liperoti, R. (2017). Delta plots do not reveal response inhibition in lying. Consciousness and Cognition, 55, 232–244.
Caudek, C., & Luccio, R. (2001). Statistica per psicologi (III rist. 2023, Vol. 11, p. 320). Laterza.
Caudek, C., Sica, C., Cerea, S., Colpizzi, I., & Stendardi, D. (2021). Susceptibility to eating disorders is associated with cognitive inflexibility in female university students. Journal of Behavioral and Cognitive Therapy, 31(4), 317–328.
Caudek, C., Sica, C., Marchetti, I., Colpizzi, I., & Stendardi, D. (2020). Cognitive inflexibility specificity for individuals with high levels of obsessive-compulsive symptoms. Journal of Behavioral and Cognitive Therapy, 30(2), 103–113.
Chekroud, A. M., Hawrilenko, M., Loho, H., Bondar, J., Gueorguieva, R., Hasan, A., Kambeitz, J., Corlett, P. R., Koutsouleris, N., Krumholz, H. M., et al. (2024). Illusory generalizability of clinical prediction models. Science, 383(6679), 164–167.
Chivers, T. (2024). Everything is predictable: How bayesian statistics explain our world. Simon; Schuster.
Cinelli, C., Forney, A., & Pearl, J. (2024). A crash course in good and bad controls. Sociological Methods & Research, 53(3), 1071–1104.
Cipresso, P., Borghesi, F., & Chirico, A. (2023). Affects affect affects: A markov chain. Frontiers in Psychology, 14, 1162655.
Clayton, A. (2021). Bernoulli’s fallacy: Statistical illogic and the crisis of modern science. Columbia University Press.
Collaboration, O. S. (2015). Estimating the reproducibility of psychological science. Science, 349(6251), aac4716.
Cronbach, L. J. (1957). The two disciplines of scientific psychology. American Psychologist, 12(11), 671–684.
Danielmeier, C., & Ullsperger, M. (2011). Post-error adjustments. Frontiers in Psychology, 2, 233.
Debertin, J., Vélez, J. A. J., Corlin, L., Hidalgo, B., & Murray, E. J. (2024). Synthesizing subject-matter expertise for variable selection in causal effect estimation: A case study. Epidemiology, 10–1097.
Doorn, J. van, Matzke, D., & Wagenmakers, E.-J. (2020). An in-class demonstration of bayesian inference. Psychology Learning & Teaching, 19(1), 36–45.
Downey, A. B. (2021). Think bayes. " O’Reilly Media, Inc.".
Duane, S., Kennedy, A. D., Pendleton, B. J., & Roweth, D. (1987). Hybrid monte carlo. Physics Letters B, 195(2), 216–222.
Duncan, K. D., & Shohamy, D. (2016). Memory states influence value-based decisions. Journal of Experimental Psychology: General, 145(11), 1420.
Eckstein, M. K., & Collins, A. G. (2020). Computational evidence for hierarchically structured reinforcement learning in humans. Proceedings of the National Academy of Sciences, 117(47), 29381–29389.
Eckstein, M., Summerfield, C., Daw, N., & Miller, K. J. (n.d.). Hybrid neural-cognitive models reveal how memory shapes human reward learning.
Eronen, M. I., & Bringmann, L. F. (2021). The theory crisis in psychology: How to move forward. Perspectives on Psychological Science, 16(4), 779–788.
Etz, A., Gronau, Q. F., Dablander, F., Edelsbrunner, P. A., & Baribault, B. (2018). How to become a bayesian in eight easy steps: An annotated reading list. Psychonomic Bulletin & Review, 25(1), 219–234.
Ferguson, C. J., & Heene, M. (2012). A vast graveyard of undead theories: Publication bias and psychological science’s aversion to the null. Perspectives on Psychological Science, 7(6), 555–561.
Fincham, E., Gašević, D., Jovanović, J., & Pardo, A. (2018). From study tactics to learning strategies: An analytical method for extracting interpretable representations. IEEE Transactions on Learning Technologies, 12(1), 59–72.
Finetti, B. de. (1970a). Teoria delle probabilità (pp. VIII, 350–769). G. Einaudi.
Finetti, B. de. (1970b). Teoria delle probabilità: Sintesi introduttiva con appendice critica. Einaudi.
Fishburn, P. C. (1986). The axioms of subjective probability. Statistical Science, 1(3), 335–345.
Fitzgerald, J. (2024). US states that mandated COVID-19 vaccination see higher, not lower, take-up of COVID-19 boosters and flu vaccines. Proceedings of the National Academy of Sciences, 121(41), e2403758121. https://doi.org/10.1073/pnas.2403758121
Fox, J. (2015). Applied regression analysis and generalized linear models. Sage publications.
Frank, M. J., & Badre, D. (2012). Mechanisms of hierarchical reinforcement learning in corticostriatal circuits 1: Computational analysis. Cerebral Cortex, 22(3), 509–526.
Freiesleben, T., & Molnar, C. (2024). Supervised machine learning for science: How to stop worrying and love your black box. https://ml-science-book.com/
Funder, D. C., Levine, J. M., Mackie, D. M., Morf, C. C., Sansone, C., Vazire, S., & West, S. G. (2014). Improving the dependability of research in personality and social psychology: Recommendations for research and educational practice. Personality and Social Psychology Review, 18(1), 3–12.
Funder, D. C., & Ozer, D. J. (2019). Evaluating effect size in psychological research: Sense and nonsense. Advances in Methods and Practices in Psychological Science, 2(2), 156–168.
Gansch, R., & Adee, A. (2020). System theoretic view on uncertainties. 2020 Design, Automation & Test in Europe Conference & Exhibition (DATE), 1345–1350.
Gee, P., Neal, A., & Vancouver, J. B. (2018). A formal model of goal revision in approach and avoidance contexts. Organizational Behavior and Human Decision Processes, 146, 51–61.
Gelman, A. (2006). Prior distributions for variance parameters in hierarchical models (comment on article by browne and draper). Bayesian Analysis, 1(3), 515–534. https://doi.org/10.1214/06-BA117A
Gelman, A. (2016). Commentary on “crisis in science? Or crisis in statistics! Mixed messages in statistics with impact on science.” Journal of Statistical Research, 48-50(1), 11–12.
Gelman, A. (2024). Before data analysis: Additional recommendations for designing experiments to learn about the world. Journal of Consumer Psychology, 34, 190–191.
Gelman, A., & Brown, N. J. (2024). How statistical challenges and misreadings of the literature combine to produce unreplicable science: An example from psychology.
Gelman, A., & Carlin, J. (2014). Beyond power calculations: Assessing type s (sign) and type m (magnitude) errors. Perspectives on Psychological Science, 9(6), 641–651.
Gelman, A., Carlin, J. B., Stern, H. S., & Rubin, D. B. (1995). Bayesian data analysis. Chapman; Hall/CRC.
Gelman, A., Hill, J., & Vehtari, A. (2020). Regression and other stories. Cambridge University Press.
Gelman, A., Hill, J., & Vehtari, A. (2021). Regression and other stories. Cambridge University Press.
Gelman, A., & Imbens, G. (2013). Why ask why? Forward causal inference and reverse causal questions. National Bureau of Economic Research.
Gelman, A., & Loken, E. (2013). The garden of forking paths: Why multiple comparisons can be a problem, even when there is no “fishing expedition” or “p-hacking” and the research hypothesis was posited ahead of time. Department of Statistics, Columbia University, 348(1-17), 3.
Gelman, A., & Loken, E. (2014). The statistical crisis in science. American Scientist, 102(6), 460–465.
Gelman, A., & Shalizi, C. R. (2013). Philosophy and the practice of bayesian statistics. British Journal of Mathematical and Statistical Psychology, 66(1), 8–38.
Gelman, A., Vehtari, A., Simpson, D., Margossian, C. C., Carpenter, B., Yao, Y., Kennedy, L., Gabry, J., Bürkner, P.-C., & Modrák, M. (2020). Bayesian workflow. arXiv Preprint arXiv:2011.01808.
Gelman, A., & Weakliem, D. (2009). Of beauty, sex and power: Too little attention has been paid to the statistical challenges in estimating small effects. American Scientist, 97(4), 310–316.
Geman, S., & Geman, D. (1984). Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6, 721–741.
Gibson, E., & Wu, H.-H. I. (2013). Processing chinese relative clauses in context. Language and Cognitive Processes, 28(1-2), 125–155.
Gill, J. (2015). Bayesian methods: A social and behavioral sciences approach (3rd Edition). Chapman; Hall/CRC.
Glass, G. V., McGaw, B., & Smith, M. L. (1981). Meta-analysis in social research. Sage Publications.
Goligher, E. C., Heath, A., & Harhay, M. O. (2024). Bayesian statistics for clinical research. The Lancet, 404(10457), 1067–1076. https://doi.org/10.1016/S0140-6736(24)00055-9
Gopalakrishna, G., Ter Riet, G., Vink, G., Stoop, I., Wicherts, J. M., & Bouter, L. M. (2022). Prevalence of questionable research practices, research misconduct and their potential explanatory factors: A survey among academic researchers in the netherlands. PloS One, 17(2), e0263023.
Gori, B., Grippo, A., Focardi, M., & Lolli, F. (2024). The italian version of edinburgh handedness inventory: Translation, transcultural adaptation, and validation in healthy subjects. Laterality, 29(2), 151–168.
Grice, J. W., Cohn, A., Ramsey, R. R., & Chaney, J. M. (2015). On muddled reasoning and mediation modeling. Basic and Applied Social Psychology, 37(4), 214–225.
Griffiths, T. L., Chater, N., & Tenenbaum, J. B. (2024). Bayesian models of cognition: Reverse engineering the mind. MIT Press.
Grimes, D. R., Bauch, C. T., & Ioannidis, J. P. (2018). Modelling science trustworthiness under publish or perish pressure. Royal Society Open Science, 5(1), 171511.
Gunawan, D., Hawkins, G. E., Kohn, R., Tran, M.-N., & Brown, S. D. (2022). Time-evolving psychological processes over repeated decisions. Psychological Review, 129(3), 438–456.
Hanada, M., & Matsuura, S. (2022). MCMC from scratch. Springer.
Hardt, M., & Recht, B. (2022). Patterns, predictions, and actions: Foundations of machine learning. Princeton University Press.
Hardwicke, T. E., Thibault, R. T., Kosie, J. E., Wallach, J. D., Kidwell, M. C., & Ioannidis, J. P. (2022). Estimating the prevalence of transparency and reproducibility-related research practices in psychology (2014–2017). Perspectives on Psychological Science, 17(1), 239–251.
Haslbeck, J. M., & Ryan, O. (2022). Recovering within-person dynamics from psychological time series. Multivariate Behavioral Research, 57(5), 735–766.
Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57(1), 97–109.
Hayes, S. C., Hofmann, S. G., Stanton, C. E., Carpenter, J. K., Sanford, B. T., Curtiss, J. E., & Ciarrochi, J. (2019). The role of the individual in the coming era of process-based therapy. Behaviour Research and Therapy, 117, 40–53.
Healy, K. (2018). Data visualization: A practical introduction. Princeton University Press.
Hempel, C. G. (1970). La formazione dei concetti e delle teorie nella scienza empirica. Feltrinelli.
Hirsch, C. R., Meeten, F., Krahé, C., & Reeder, C. (2016). Resolving ambiguity in emotional disorders: The nature and role of interpretation biases. Annual Review of Clinical Psychology, 12(1), 281–305.
Hitchcock, P. F., Fried, E. I., & Frank, M. J. (2022). Computational psychiatry needs time and context. Annual Review of Psychology, 73(1), 243–270.
Hoffman, M. D., Gelman, A., et al. (2014). The no-u-turn sampler: Adaptively setting path lengths in hamiltonian monte carlo. Journal of Machine Learning Research, 15(1), 1593–1623.
Hoffmann, T., Hofman, A., & Wagenmakers, E.-J. (2022). Bayesian tests of two proportions: A tutorial with r and JASP. Methodology, 18(4), 239–277.
Hoogeveen, S., Sarafoglou, A., & Wagenmakers, E.-J. (2020). Laypeople can predict which social-science studies will be replicated successfully. Advances in Methods and Practices in Psychological Science, 3(3), 267–285.
Howson, C., & Urbach, P. (2006). Scientific reasoning: The bayesian approach. Open Court Publishing.
Huntington-Klein, N. (2021). The effect: An introduction to research design and causality. Chapman; Hall/CRC.
Ioannidis, J. P. (2005). Why most published research findings are false. PLoS Medicine, 2(8), e124.
Ioannidis, J. P. (2019). What have we (not) learnt from millions of scientific papers with p values? The American Statistician, 73(sup1), 20–25.
Jaynes, E. T. (2003). Probability theory: The logic of science. Cambridge University Press.
Johnson, A. A., Ott, M., & Dogucu, M. (2022). Bayes Rules! An Introduction to Bayesian Modeling with R. CRC Press.
Jung, K., Shavitt, S., Viswanathan, M., & Hilbe, J. M. (2014). Female hurricanes are deadlier than male hurricanes. Proceedings of the National Academy of Sciences, 111(24), 8782–8787.
Kanazawa, S. (2007). Beautiful parents have more daughters: A further implication of the generalized trivers–willard hypothesis (gTWH). Journal of Theoretical Biology, 244(1), 133–140.
Kaplan, D. (2023). Bayesian statistics for the social sciences. Guilford Publications.
Karataş, M., & Cutright, K. M. (2023). Thinking about god increases acceptance of artificial intelligence in decision-making. Proceedings of the National Academy of Sciences, 120(33), e2218961120.
Khaw, M. W., Glimcher, P. W., & Louie, K. (2017). Normalized value coding explains dynamic adaptation in the human valuation process. Proceedings of the National Academy of Sciences, 114(48), 12696–12701.
Knight, E., Neal, A., Palada, H., & Ballard, T. (2023). A tutorial on bayesian modeling of change across time, individuals, and groups. Computational Brain & Behavior, 6(4), 697–718.
Korbmacher, M., Azevedo, F., Pennington, C. R., Hartmann, H., Pownall, M., Schmidt, K., Elsherif, M., Breznau, N., Robertson, O., Kalandadze, T., et al. (2023). The replication crisis has led to positive structural, procedural, and community changes. Communications Psychology, 1(1), 3.
Kruschke, J. (2014). Doing bayesian data analysis: A tutorial with R, JAGS, and Stan. Academic Press.
Kullback, S., & Leibler, R. A. (1951). On information and sufficiency. The Annals of Mathematical Statistics, 22(1), 79–86.
Labatut, B. (2021). Quando abbiamo smesso di capire il mondo. Adelphi Edizioni spa.
Lakens, D. (2015). On the challenges of drawing conclusions from p-values just below 0.05. PeerJ, 3, e1142.
Larson, C., Kaplan, D., Girolamo, T., Kover, S. T., & Eigsti, I.-M. (2023). A bayesian statistics tutorial for clinical research: Prior distributions and meaningful results for small clinical samples. Journal of Clinical Psychology, 79(11), 2602–2624.
Leemput, I. A. van de, Wichers, M., Cramer, A. O., Borsboom, D., Tuerlinckx, F., Kuppens, P., Van Nes, E. H., Viechtbauer, W., Giltay, E. J., Aggen, S. H., et al. (2014). Critical slowing down as early warning for the onset and termination of depression. Proceedings of the National Academy of Sciences, 111(1), 87–92.
Leppik, I., Dreifuss, F., Porter, R., Bowman, T., Santilli, N., Jacobs, M., Crosby, C., Cloyd, J., Stackman, J., Graves, N., et al. (1987). A controlled study of progabide in partial seizures: Methodology and results. Neurology, 37(6), 963–963.
Lilienfeld, S. O., & Strother, A. N. (2020). Psychological measurement and the replication crisis: Four sacred cows. Canadian Psychology/Psychologie Canadienne, 61(4), 281–288.
Lim, L., Bannert, M., Graaf, J. van der, Singh, S., Fan, Y., Surendrannair, S., Rakovic, M., Molenaar, I., Moore, J., & Gašević, D. (2023). Effects of real-time analytics-based personalized scaffolds on students’ self-regulated learning. Computers in Human Behavior, 139, 107547.
Lindley, D. V. (2013). Understanding uncertainty. John Wiley & Sons.
Loken, E., & Gelman, A. (2017). Measurement error and the replication crisis. Science, 355(6325), 584–585.
Loredo, T. J., & Wolpert, R. L. (2024). Bayesian inference: More than bayes’s theorem. Frontiers in Astronomy and Space Sciences, 11, 1326926.
Lundberg, I., Johnson, R., & Stewart, B. M. (2021). What is your estimand? Defining the target quantity connects statistical evidence to theory. American Sociological Review, 86(3), 532–565.
Marr, D. (2010). Vision: A computational investigation into the human representation and processing of visual information. MIT press.
Martin, O. (2024). Bayesian analysis with python. Packt Publishing Ltd.
Martin, O. A., Kumar, R., & Lao, J. (2022). Bayesian modeling and computation in python. CRC Press.
Matcha, W., Gasevic, D., Jovanovic, J., Pardo, A., Lim, L., Maldonado-Mahauad, J., Gentili, S., Pérez-Sanagustı́n, M., Tsai, Y.-S., et al. (2020). Analytics of learning strategies: Role of course design and delivery modality authors. Journal of Learning Analytics, 7(2), 45–71.
Matter, U. (2025). Data analysis with AI and R (1st Edition). Manning Publications.
Maul, A., Irribarra, D. T., & Wilson, M. (2016). On the philosophical foundations of psychological measurement. Measurement, 79, 311–320.
McElreath, R. (2020). Statistical rethinking: A Bayesian course with examples in R and Stan (2nd Edition). CRC Press.
McKinney, W. (2022). Python for data analysis. " O’Reilly Media, Inc.".
Meehl, P. E. (1967). Theory-testing in psychology and physics: A methodological paradox. Philosophy of Science, 34(2), 103–115.
Meehl, P. E. (2012). Why summaries of research on psychological theories are often uninterpretable. In Improving inquiry in social science (pp. 13–59). Routledge.
Mehr, S. A., Song, L. A., & Spelke, E. S. (2016). For 5-month-old infants, melodies are social. Psychological Science, 27(4), 486–501.
Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E. (1953). Equation of state calculations by fast computing machines. The Journal of Chemical Physics, 21(6), 1087–1092.
Mildiner Moraga, S., Bos, F. M., Doornbos, B., Bruggeman, R., Krieke, L. van der, Snippe, E., & Aarts, E. (2024). Evidence for mood instability in patients with bipolar disorder: Applying multilevel hidden markov modeling to intensive longitudinal ecological momentary assessment data. Journal of Psychopathology and Clinical Science.
Mogg, K., Bradbury, K. E., & Bradley, B. P. (2006). Interpretation of ambiguous information in clinical depression. Behaviour Research and Therapy, 44(10), 1411–1419.
Moore, D. A., Schroeder, J., Bailey, E. R., Gershon, R., Moore, J. E., & Simmons, J. P. (2024). Does thinking about god increase acceptance of artificial intelligence in decision-making? Proceedings of the National Academy of Sciences, 121(31), e2402315121.
Munger, K. (2023). Temporal validity as meta-science. Research & Politics, 10(3), 20531680231187271.
Murray, E. J., & Carr, K. C. (2024). Measuring racial sentiment using social media is harder than it seems. Epidemiology, 35(1), 60–63.
Muthukrishna, M., & Henrich, J. (2019). A problem in theory. Nature Human Behaviour, 3(3), 221–229.
Myers, C. E., Interian, A., & Moustafa, A. A. (2022). A practical introduction to using the drift diffusion model of decision-making in cognitive psychology, neuroscience, and health sciences. Frontiers in Psychology, 13, 1039172.
Navarro, D. J. (2019). Between the devil and the deep blue sea: Tensions between scientific judgement and statistical model selection. Computational Brain & Behavior, 2(1), 28–34.
Nelson, L. D., Simmons, J., & Simonsohn, U. (2018). Psychology’s renaissance. Annual Review of Psychology, 69(1), 511–534.
Neyman, J. (1923). Sur les applications de la théorie des probabilités aux experiences agricoles: Essai des principes. Roczniki Nauk Rolniczych, 10(1), 1–51.
Nicenboim, B., Schad, D., & Vasishth, S. (2024). An introduction to bayesian data analysis for cognitive science. Chapman and Hall/CRC.
Nobles, M. (2000). Shades of citizenship: Race and the census in modern politics. Stanford University Press.
Nosek, B. A., Spies, J. R., & Motyl, M. (2012). Scientific utopia: II. Restructuring incentives and practices to promote truth over publishability. Perspectives on Psychological Science, 7(6), 615–631.
Notebaert, W., Houtman, F., Van Opstal, F., Gevers, W., Fias, W., & Verguts, T. (2009). Post-error slowing: An orienting account. Cognition, 111(2), 275–279.
Nuzzo, R. (2014). Statistical errors. Nature, 506(7487), 150–152.
O’Hagan, A. (2019). Expert knowledge elicitation: Subjective but scientific. The American Statistician, 73(sup1), 69–81.
Oberauer, K., & Lewandowsky, S. (2019). Addressing the theory crisis in psychology. Psychonomic Bulletin & Review, 26, 1596–1618.
Oijen, M. van. (2024). Bayesian compendium (2nd ed.). Springer. https://doi.org/10.1007/978-3-031-66085-6
Palminteri, S., Khamassi, M., Joffily, M., & Coricelli, G. (2015). Contextual modulation of value signals in reward and punishment learning. Nature Communications, 6(1), 8096.
Papadatou-Pastou, M., Ntolka, E., Schmitz, J., Martin, M., Munafò, M. R., Ocklenburg, S., & Paracchini, S. (2020). Human handedness: A meta-analysis. Psychological Bulletin, 146(6), 481–524.
Paxinou, E., Kalles, D., Panagiotakopoulos, C. T., & Verykios, V. S. (2021). Analyzing sequence data with markov chain models in scientific experiments. SN Computer Science, 2(5), 385.
Pearl, J. (1995). Causal diagrams for empirical research. Biometrika, 82(4), 669–688.
Pearl, J. (2009). Causality. Cambridge University Press.
Pearl, J., Glymour, M., & Jewell, N. P. (2016). Causal inference in statistics: A primer. John Wiley & Sons.
Pearl, J., & Mackenzie, D. (2018). The book of why: The new science of cause and effect. Basic books.
Peeters, W., Saqr, M., & Viberg, O. (2020). Applying learning analytics to map students’ self-regulated learning tactics in an academic writing course. Proceedings of the 28th International Conference on Computers in Education, 1, 245–254.
Petersen, I. T. (2024). Principles of psychological assessment: With applied examples in r. CRC Press.
Pines, A., Tozzi, L., Bertrand, C., Keller, A. S., Zhang, X., Whitfield-Gabrieli, S., Hastie, T., Larsen, B., Leikauf, J., & Williams, L. M. (2024). Psychiatric symptoms, cognition, and symptom severity in children. JAMA Psychiatry. https://doi.org/10.1001/jamapsychiatry.2024.2399
Press, S. J. (2009). Subjective and objective bayesian statistics: Principles, models, and applications. John Wiley & Sons.
Pulcu, E., & Browning, M. (2019). The misestimation of uncertainty in affective disorders. Trends in Cognitive Sciences, 23(10), 865–875.
Rafaeli, E., & Revelle, W. (2006). A premature consensus: Are happiness and sadness truly opposite affects? Motivation and Emotion, 30, 1–12.
Rains, S. A., & Richards, A. S. (2024). US state vaccine mandates did not influence COVID-19 vaccination rates but reduced uptake of COVID-19 boosters and flu vaccines compared to bans on vaccine restrictions. Proceedings of the National Academy of Sciences, 121(8), e2313610121.
Ramsey, F. P. (1926). Truth and probability. In Readings in formal epistemology: sourcebook (pp. 21–45). Springer.
Rescorla, R. A., & Wagner, A. R. (1972). A theory of pavlovian conditioning: Variations in the effectiveness of reinforcement and non-reinforcement. Classical Conditioning II, Current Research and Theory, 2, 64–69.
Riederer, E. (2021). Causal design patterns for data analysts. https://emilyriederer.netlify.app/post/causal-design-patterns/
Riha, A. E., Siccha, N., Oulasvirta, A., & Vehtari, A. (2024). Supporting bayesian modelling workflows with iterative filtering for multiverse analysis. arXiv Preprint arXiv:2404.01688.
Ritchie, S. J., Wiseman, R., & French, C. C. (2012). Failing the future: Three unsuccessful attempts to replicate bem’s ‘retroactive facilitation of recall’effect. PloS One, 7(3), e33423.
Roger, E. (1987). Stan ulam, john von neumann, and the monte carlo method. Los Alamos Science, 15, 131–137.
Rosa, L., Rosa, E., Sarner, L., & Barrett, S. (1998). A close look at therapeutic touch. Jama, 279(13), 1005–1010.
Ross, C. T., Winterhalder, B., & McElreath, R. (2021). Racial disparities in police use of deadly force against unarmed individuals persist after appropriately benchmarking shooting data on violent crime rates. Social Psychological and Personality Science, 12(3), 323–332.
Rowland, Z., & Wenzel, M. (2020). Mindfulness and affect-network density: Does mindfulness facilitate disengagement from affective experiences in daily life? Mindfulness, 11, 1253–1266.
Rubin, D. B. (1974). Estimating causal effects of treatments in randomized and nonrandomized studies. Journal of Educational Psychology, 66(5), 688–701.
Russell, J. A. (1980). A circumplex model of affect. Journal of Personality and Social Psychology, 39(6), 1161–1178.
Saqr, M., & López-Pernas, S. (2023). The temporal dynamics of online problem-based learning: Why and when sequence matters. International Journal of Computer-Supported Collaborative Learning, 18(1), 11–37.
Scheel, A. M., Schijen, M. R., & Lakens, D. (2021). An excess of positive results: Comparing the standard psychology literature with registered reports. Advances in Methods and Practices in Psychological Science, 4(2), 25152459211007467.
Schennach, S. M. (2016). Recent advances in the measurement error literature. Annual Review of Economics, 8(1), 341–377.
Scholz, U., Stadler, G., Berli, C., Lüscher, J., & Knoll, N. (2021). How do people experience and respond to social control from their partner? Three daily diary studies. Frontiers in Psychology, 11, 613546.
Schoot, V. R. de, Veen, D., Smeets, L., & Winter, S. (2020). A tutorial on using the WAMBS checklist to avoid the misuse of bayesian statistics (pp. 30–49). Routledge.
Schulz, E., & Gershman, S. J. (2019). The algorithmic architecture of exploration in the human brain. Current Opinion in Neurobiology, 55, 7–14.
Schumacher, L., Bürkner, P.-C., Voss, A., Köthe, U., & Radev, S. T. (2023). Neural superstatistics for bayesian estimation of dynamic cognitive models. Scientific Reports, 13(1), 13778.
Shiffrin, R. M., & Schneider, W. (1977). Controlled and automatic human information processing: II. Perceptual learning, automatic attending and a general theory. Psychological Review, 84(2), 127–190.
Shrout, P. E., & Rodgers, J. L. (2018). Psychology, science, and knowledge construction: Broadening perspectives from the replication crisis. Annual Review of Psychology, 69(1), 487–510.
Simchon, A., Hadar, B., & Gilead, M. (2023). A computational text analysis investigation of the relation between personal and linguistic agency. Communications Psychology, 1(1), 23.
Simmons, J. P., Nelson, L. D., & Simonsohn, U. (2011). False-positive psychology: Undisclosed flexibility in data collection and analysis allows presenting anything as significant. Psychological Science, 22(11), 1359–1366.
Skinner, B. F. (1965). Science and human behavior. Simon; Schuster.
Smaldino, P. E., & McElreath, R. (2016). The natural selection of bad science. Royal Society Open Science, 3(9), 160384.
Sommet, N., Weissman, D. L., Cheutin, N., & Elliot, A. J. (2023). How many participants do i need to test an interaction? Conducting an appropriate power analysis and achieving sufficient power to detect an interaction. Advances in Methods and Practices in Psychological Science, 6(3), 25152459231178728.
Sorensen, T., & Vasishth, S. (2015). Bayesian linear mixed models using stan: A tutorial for psychologists, linguists, and cognitive scientists. arXiv Preprint arXiv:1506.06201.
Soto, F. A., Vogel, E. H., Uribe-Bahamonde, Y. E., & Perez, O. D. (2023). Why is the rescorla-wagner model so influential? Neurobiology of Learning and Memory, 204, 107794.
Spake, R., Bowler, D. E., Callaghan, C. T., Blowes, S. A., Doncaster, C. P., Antao, L. H., Nakagawa, S., McElreath, R., & Chase, J. M. (2023). Understanding “it depends” in ecology: A guide to hypothesising, visualising and interpreting statistical interactions. Biological Reviews, 98(4), 983–1002.
Spector, A. J. (1956). Expectations, fulfillment, and morale. The Journal of Abnormal and Social Psychology, 52(1), 51–56.
Speelman, C. P., Parker, L., Rapley, B. J., & McGann, M. (2024). Most psychological researchers assume their samples are ergodic: Evidence from a year of articles in three major journals. Collabra: Psychology, 10(1).
Steegen, S., Tuerlinckx, F., Gelman, A., & Vanpaemel, W. (2016). Increasing transparency through a multiverse analysis. Perspectives on Psychological Science, 11(5), 702–712.
Stevens, S. S. (1946). On the theory of scales of measurement. Science, 103(2684), 677–680.
Stigler, S. (1986). The history of statistics. Belknap Harvard.
Stone, J. V. (2022). Information theory: A tutorial introduction, 2nd edition.
Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction, second edi. The MIT Press.
Tackett, J. L., Brandes, C. M., King, K. M., & Markon, K. E. (2019). Psychology’s replication crisis and clinical psychological science. Annual Review of Clinical Psychology, 15(1), 579–604.
Tomitaka, S., Kawasaki, Y., Ide, K., Akutagawa, M., Ono, Y., & Furukawa, T. A. (2019). Distribution of psychological distress is stable in recent decades and follows an exponential pattern in the US population. Scientific Reports, 9(1), 11982.
Törmänen, T., Järvenoja, H., Saqr, M., Malmberg, J., & Järvelä, S. (2022). A person-centered approach to study students’ socio-emotional interaction profiles and regulation of collaborative learning. Frontiers in Education, 7, 866612.
Törmänen, T., Järvenoja, H., Saqr, M., Malmberg, J., & Järvelä, S. (2023). Affective states and regulation of learning during socio-emotional interactions in secondary school collaborative groups. British Journal of Educational Psychology, 93, 48–70.
Van Dongen, N., Bork, R. van, Finnemann, A., Haslbeck, J., Maas, H. L. van der, Robinaugh, D. J., Ron, J. de, Sprenger, J., & Borsboom, D. (2024). Productive explanation: A framework for evaluating explanations in psychological science. Psychological Review.
Vehtari, A., Gelman, A., Simpson, D., Carpenter, B., & Bürkner, P.-C. (2021). Rank-normalization, folding, and localization: An improved r ̂ for assessing convergence of MCMC (with discussion). Bayesian Analysis, 16(2), 667–718.
Wagenmakers, E.-J., Lee, M., Lodewyckx, T., & Iverson, G. J. (2008). Bayesian versus frequentist inference. Bayesian Evaluation of Informative Hypotheses, 181–207.
Wagenmakers, E.-J., Marsman, M., Jamil, T., Ly, A., Verhagen, J., Love, J., Selker, R., Gronau, Q. F., Šmı́ra, M., Epskamp, S., et al. (2018). Bayesian inference for psychology. Part i: Theoretical advantages and practical ramifications. Psychonomic Bulletin & Review, 25, 35–57.
Ward, A., & Mann, T. (2022). Control yourself: Broad implications of narrowed attention. Perspectives on Psychological Science, 17(6), 1692–1703.
Ware, J. J., & Munafò, M. R. (2015). Significance chasing in research practice: Causes, consequences and possible solutions. Addiction, 110(1), 4–8.
Wasserstein, R. L., & Lazar, N. A. (2016). The ASA’s statement on p-values: Context, process, and purpose. The American Statistician, 70(2), 129–133.
Watson, J. B. (1913). Psychology as the behaviorist views it. Psychological Review, 20(2), 158.
West, R. M. (2022). Best practice in statistics: The use of log transformation. Annals of Clinical Biochemistry, 59(3), 162–165.
Westreich, D., & Greenland, S. (2013). The table 2 fallacy: Presenting and interpreting confounder and modifier coefficients. American Journal of Epidemiology, 177(4), 292–298.
Wickham, H., Çetinkaya-Rundel, M., & Grolemund, G. (2023). R for data science. " O’Reilly Media, Inc.".
Wilke, C. O. (2019). Fundamentals of data visualization: A primer on making informative and compelling figures. O’Reilly Media.
Wilkinson, G., & Rogers, C. (1973). Symbolic description of factorial models for analysis of variance. Journal of the Royal Statistical Society Series C: Applied Statistics, 22(3), 392–399.
Williams, W. C., Haque, E., Mai, B., & Venkatraman, V. (2023). Face masks influence emotion judgments of facial expressions: A drift–diffusion model. Scientific Reports, 13(1), 8842.
Wilms, R., Mäthner, E., Winnen, L., & Lanwehr, R. (2021). Omitted variable bias: A threat to estimating causal relationships. Methods in Psychology, 5, 100075.
Yang, Y., Youyou, W., & Uzzi, B. (2020). Estimating the deep replicability of scientific findings using human and artificial intelligence. Proceedings of the National Academy of Sciences, 117(20), 10762–10768.
Yaple, Z. A., & Yu, R. (2019). Fractionating adaptive learning: A meta-analysis of the reversal learning paradigm. Neuroscience & Biobehavioral Reviews, 102, 85–94.
Yarkoni, T. (2022). The generalizability crisis. Behavioral and Brain Sciences, 45, e1.
Youyou, W., Yang, Y., & Uzzi, B. (2023). A discipline-wide investigation of the replicability of psychology papers over the past two decades. Proceedings of the National Academy of Sciences, 120(6), e2208863120.
Yu, B., & Barter, R. L. (2024). Veridical data science: The practice of responsible data analysis and decision making. MIT Press.
Zanesco, A. P. (2020). Quantifying streams of thought during cognitive task performance using sequence analysis. Behavior Research Methods, 52(6), 2417–2437.
Zetsche, U., Buerkner, P.-C., & Renneberg, B. (2019). Future expectations in clinical depression: Biased or realistic? Journal of Abnormal Psychology, 128(7), 678.
Zwet, E. van, Gelman, A., Greenland, S., Imbens, G., Schwab, S., & Goodman, S. N. (2023). A new look at p values for randomized clinical trials. NEJM Evidence, 3(1), EVIDoa2300003.