Bibliografia
Albert, J., & Hu, J. (2019). Probability and bayesian
modeling. CRC Press.
Alexander, R. (2023). Telling stories with data: With applications
in r. Chapman; Hall/CRC.
Altmejd, A., Dreber, A., Forsell, E., Huber, J., Imai, T., Johannesson,
M., Kirchler, M., Nave, G., & Camerer, C. (2019). Predicting the
replicability of social science lab experiments. PloS One,
14(12), e0225826.
Angrist, J. D., & Pischke, J.-S. (2010). The credibility revolution
in empirical economics: How better research design is taking the con out
of econometrics. Journal of Economic Perspectives,
24(2), 3–30.
Aungle, P., & Langer, E. (2023). Physical healing as a function of
perceived time. Scientific Reports, 13(1), 22432.
Baker, M. (2016a). 1,500 scientists lift the lid on reproducibility.
Nature, 533(7604).
Baker, M. (2016b). Reproducibility crisis. Nature,
533(7604), 452–454.
Barber, D. (2012). Bayesian reasoning and machine learning.
Cambridge University Press.
Bargh, J. A., Chen, M., & Burrows, L. (1996). Automaticity of social
behavior: Direct effects of trait construct and stereotype activation on
action. Journal of Personality and Social Psychology,
71(2), 230–244.
Baribault, B., & Collins, A. G. (2023). Troubleshooting bayesian
cognitive models. Psychological Methods.
Bem, D. J. (2011). Feeling the future: Experimental evidence for
anomalous retroactive influences on cognition and affect. Journal of
Personality and Social Psychology, 100(3), 407–425.
Benjamin, D. J., Berger, J. O., Johannesson, M., Nosek, B. A.,
Wagenmakers, E.-J., Berk, R., Bollen, K. A., Brembs, B., Brown, L.,
Camerer, C., et al. (2018). Redefine statistical significance.
Nature Human Behaviour, 2(1), 6–10.
Betancourt, M. (2016). Diagnosing suboptimal cotangent disintegrations
in hamiltonian monte carlo. arXiv Preprint arXiv:1604.00695.
Bishop, D. (2019). The psychology of experimental psychologists:
Overcoming cognitive constraints to improve research.
Bland, J. M., & Altman, D. G. (2011). Comparisons within randomised
groups can be very misleading. Bmj, 342.
Blei, D. M. (2014). Build, compute, critique, repeat: Data analysis with
latent variable models. Annual Review of Statistics and Its
Application, 1(1), 203–232.
Boden, M. A. (2008). An evaluation of computational modeling in
cognitive science.
Borel, E. (1914). Introduction
géométrique. G. Villars, New York.
Bornstein, A. M., & Norman, K. A. (2017). Reinstated episodic
context guides sampling-based decisions for reward. Nature
Neuroscience, 20(7), 997–1003.
Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S., &
Cohen, J. D. (2001). Conflict monitoring and cognitive control.
Psychological Review, 108(3), 624–652.
Box, G. E. (1976). Science and statistics. Journal of the American
Statistical Association, 71(356), 791–799.
Browning, M., Behrens, T. E., Jocham, G., O’reilly, J. X., & Bishop,
S. J. (2015). Anxious individuals have difficulty learning the causal
statistics of aversive environments. Nature Neuroscience,
18(4), 590–596.
Bruton, S. V., Medlin, M., Brown, M., & Sacco, D. F. (2020).
Personal motivations and systemic incentives: Scientists on questionable
research practices. Science and Engineering Ethics,
26(3), 1531–1547.
Buchanan, E. M., Crain, S. E., Cunningham, A. L., Johnson, H. R., Stash,
H., Papadatou-Pastou, M., Isager, P. M., Carlsson, R., & Aczel, B.
(2021). Getting started creating data dictionaries: How to create a
shareable data set. Advances in Methods and Practices in
Psychological Science, 4(1), 2515245920928007.
Bulbulia, J. A. (2023). A workflow for causal inference in
cross-cultural psychology. Religion, Brain & Behavior,
13(3), 291–306.
Bürkner, P.-C. (2024). The brms book: Applied bayesian regression
modelling using r and stan (early draft). https://paulbuerkner.com/software/brms-book
Butler, R. C. (2022). Popularity leads to bad habits: Alternatives to
“the statistics” routine of significance,“alphabet
soup” and dynamite plots. In Annals of Applied Biology
(No. 2; Vol. 180, pp. 182–195). Wiley Online Library.
Byrnes, J. E., & Dee, L. E. (2024). Causal inference with
observational data and unobserved confounding variables.
bioRxiv, 2024–2002.
Calin-Jageman, R. J., & Caldwell, T. L. (2014). Replication of the
superstition and performance study by damisch, stoberock, and mussweiler
(2010). Social Psychology.
Camerer, C. F., Dreber, A., Holzmeister, F., Ho, T.-H., Huber, J.,
Johannesson, M., Kirchler, M., Nave, G., Nosek, B. A., Pfeiffer, T., et
al. (2018). Evaluating the replicability of social science experiments
in nature and science between 2010 and 2015. Nature Human
Behaviour, 2(9), 637–644.
Carlin, J. B., & Moreno-Betancur, M. (2023). On the uses and abuses
of regression models: A call for reform of statistical practice and
teaching. arXiv Preprint arXiv:2309.06668.
Caudek, C., Lorenzino, M., & Liperoti, R. (2017). Delta plots do not
reveal response inhibition in lying. Consciousness and
Cognition, 55, 232–244.
Caudek, C., & Luccio, R. (2001). Statistica per psicologi
(III rist. 2023, Vol. 11, p. 320). Laterza.
Caudek, C., Sica, C., Cerea, S., Colpizzi, I., & Stendardi, D.
(2021). Susceptibility to eating disorders is associated with cognitive
inflexibility in female university students. Journal of Behavioral
and Cognitive Therapy, 31(4), 317–328.
Caudek, C., Sica, C., Marchetti, I., Colpizzi, I., & Stendardi, D.
(2020). Cognitive inflexibility specificity for individuals with high
levels of obsessive-compulsive symptoms. Journal of Behavioral and
Cognitive Therapy, 30(2), 103–113.
Chekroud, A. M., Hawrilenko, M., Loho, H., Bondar, J., Gueorguieva, R.,
Hasan, A., Kambeitz, J., Corlett, P. R., Koutsouleris, N., Krumholz, H.
M., et al. (2024). Illusory generalizability of clinical prediction
models. Science, 383(6679), 164–167.
Chivers, T. (2024). Everything is predictable: How bayesian
statistics explain our world. Simon; Schuster.
Cinelli, C., Forney, A., & Pearl, J. (2024). A crash course in good
and bad controls. Sociological Methods & Research,
53(3), 1071–1104.
Cipresso, P., Borghesi, F., & Chirico, A. (2023). Affects affect
affects: A markov chain. Frontiers in Psychology, 14,
1162655.
Clayton, A. (2021). Bernoulli’s fallacy: Statistical illogic and the
crisis of modern science. Columbia University Press.
Collaboration, O. S. (2015). Estimating the reproducibility of
psychological science. Science, 349(6251), aac4716.
Cronbach, L. J. (1957). The two disciplines of scientific psychology.
American Psychologist, 12(11), 671–684.
Danielmeier, C., & Ullsperger, M. (2011). Post-error adjustments.
Frontiers in Psychology, 2, 233.
Debertin, J., Vélez, J. A. J., Corlin, L., Hidalgo, B., & Murray, E.
J. (2024). Synthesizing subject-matter expertise for variable selection
in causal effect estimation: A case study. Epidemiology,
10–1097.
Doorn, J. van, Matzke, D., & Wagenmakers, E.-J. (2020). An in-class
demonstration of bayesian inference. Psychology Learning &
Teaching, 19(1), 36–45.
Downey, A. B. (2021). Think bayes. " O’Reilly Media, Inc.".
Duane, S., Kennedy, A. D., Pendleton, B. J., & Roweth, D. (1987).
Hybrid monte carlo. Physics Letters B, 195(2),
216–222.
Duncan, K. D., & Shohamy, D. (2016). Memory states influence
value-based decisions. Journal of Experimental Psychology:
General, 145(11), 1420.
Eckstein, M. K., & Collins, A. G. (2020). Computational evidence for
hierarchically structured reinforcement learning in humans.
Proceedings of the National Academy of Sciences,
117(47), 29381–29389.
Eckstein, M., Summerfield, C., Daw, N., & Miller, K. J. (n.d.).
Hybrid neural-cognitive models reveal how memory shapes human reward
learning.
Eronen, M. I., & Bringmann, L. F. (2021). The theory crisis in
psychology: How to move forward. Perspectives on Psychological
Science, 16(4), 779–788.
Etz, A., Gronau, Q. F., Dablander, F., Edelsbrunner, P. A., &
Baribault, B. (2018). How to become a bayesian in eight easy steps: An
annotated reading list. Psychonomic Bulletin & Review,
25(1), 219–234.
Ferguson, C. J., & Heene, M. (2012). A vast graveyard of undead
theories: Publication bias and psychological science’s aversion to the
null. Perspectives on Psychological Science, 7(6),
555–561.
Fincham, E., Gašević, D., Jovanović, J., & Pardo, A. (2018). From
study tactics to learning strategies: An analytical method for
extracting interpretable representations. IEEE Transactions on
Learning Technologies, 12(1), 59–72.
Finetti, B. de. (1970a). Teoria delle probabilità (pp. VIII,
350–769). G. Einaudi.
Finetti, B. de. (1970b). Teoria delle probabilità:
Sintesi introduttiva con appendice critica. Einaudi.
Fishburn, P. C. (1986). The axioms of subjective probability.
Statistical Science, 1(3), 335–345.
Fitzgerald, J. (2024). US states that mandated COVID-19 vaccination see
higher, not lower, take-up of COVID-19 boosters and flu vaccines.
Proceedings of the National Academy of Sciences,
121(41), e2403758121. https://doi.org/10.1073/pnas.2403758121
Fox, J. (2015). Applied regression analysis and generalized linear
models. Sage publications.
Frank, M. J., & Badre, D. (2012). Mechanisms of hierarchical
reinforcement learning in corticostriatal circuits 1: Computational
analysis. Cerebral Cortex, 22(3), 509–526.
Freiesleben, T., & Molnar, C. (2024). Supervised machine
learning for science: How to stop worrying and love your black box.
https://ml-science-book.com/
Funder, D. C., Levine, J. M., Mackie, D. M., Morf, C. C., Sansone, C.,
Vazire, S., & West, S. G. (2014). Improving the dependability of
research in personality and social psychology: Recommendations for
research and educational practice. Personality and Social Psychology
Review, 18(1), 3–12.
Funder, D. C., & Ozer, D. J. (2019). Evaluating effect size in
psychological research: Sense and nonsense. Advances in Methods and
Practices in Psychological Science, 2(2), 156–168.
Gansch, R., & Adee, A. (2020). System theoretic view on
uncertainties. 2020 Design, Automation & Test in Europe
Conference & Exhibition (DATE), 1345–1350.
Gee, P., Neal, A., & Vancouver, J. B. (2018). A formal model of goal
revision in approach and avoidance contexts. Organizational Behavior
and Human Decision Processes, 146, 51–61.
Gelman, A. (2006). Prior distributions for variance parameters in
hierarchical models (comment on article by browne and draper).
Bayesian Analysis, 1(3), 515–534. https://doi.org/10.1214/06-BA117A
Gelman, A. (2016). Commentary on “crisis in science? Or crisis in
statistics! Mixed messages in statistics with impact on science.”
Journal of Statistical Research, 48-50(1), 11–12.
Gelman, A. (2024). Before data analysis: Additional recommendations for
designing experiments to learn about the world. Journal of Consumer
Psychology, 34, 190–191.
Gelman, A., & Brown, N. J. (2024). How statistical challenges
and misreadings of the literature combine to produce unreplicable
science: An example from psychology.
Gelman, A., & Carlin, J. (2014). Beyond power calculations:
Assessing type s (sign) and type m (magnitude) errors. Perspectives
on Psychological Science, 9(6), 641–651.
Gelman, A., Carlin, J. B., Stern, H. S., & Rubin, D. B. (1995).
Bayesian data analysis. Chapman; Hall/CRC.
Gelman, A., Hill, J., & Vehtari, A. (2020). Regression and other
stories. Cambridge University Press.
Gelman, A., Hill, J., & Vehtari, A. (2021). Regression and other
stories. Cambridge University Press.
Gelman, A., & Imbens, G. (2013). Why ask why? Forward causal
inference and reverse causal questions. National Bureau of Economic
Research.
Gelman, A., & Loken, E. (2013). The garden of forking paths: Why
multiple comparisons can be a problem, even when there is no
“fishing expedition” or “p-hacking” and the
research hypothesis was posited ahead of time. Department of
Statistics, Columbia University, 348(1-17), 3.
Gelman, A., & Loken, E. (2014). The statistical crisis in science.
American Scientist, 102(6), 460–465.
Gelman, A., & Shalizi, C. R. (2013). Philosophy and the practice of
bayesian statistics. British Journal of Mathematical and Statistical
Psychology, 66(1), 8–38.
Gelman, A., Vehtari, A., Simpson, D., Margossian, C. C., Carpenter, B.,
Yao, Y., Kennedy, L., Gabry, J., Bürkner, P.-C., & Modrák, M.
(2020). Bayesian workflow. arXiv Preprint arXiv:2011.01808.
Gelman, A., & Weakliem, D. (2009). Of beauty, sex and power: Too
little attention has been paid to the statistical challenges in
estimating small effects. American Scientist, 97(4),
310–316.
Geman, S., & Geman, D. (1984). Stochastic relaxation,
Gibbs distributions, and the Bayesian
restoration of images. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 6, 721–741.
Gibson, E., & Wu, H.-H. I. (2013). Processing chinese relative
clauses in context. Language and Cognitive Processes,
28(1-2), 125–155.
Gill, J. (2015). Bayesian methods: A social and behavioral sciences
approach (3rd Edition). Chapman; Hall/CRC.
Glass, G. V., McGaw, B., & Smith, M. L. (1981). Meta-analysis in
social research. Sage Publications.
Goligher, E. C., Heath, A., & Harhay, M. O. (2024). Bayesian
statistics for clinical research. The Lancet,
404(10457), 1067–1076. https://doi.org/10.1016/S0140-6736(24)00055-9
Gopalakrishna, G., Ter Riet, G., Vink, G., Stoop, I., Wicherts, J. M.,
& Bouter, L. M. (2022). Prevalence of questionable research
practices, research misconduct and their potential explanatory factors:
A survey among academic researchers in the netherlands. PloS
One, 17(2), e0263023.
Gori, B., Grippo, A., Focardi, M., & Lolli, F. (2024). The italian
version of edinburgh handedness inventory: Translation, transcultural
adaptation, and validation in healthy subjects. Laterality,
29(2), 151–168.
Grice, J. W., Cohn, A., Ramsey, R. R., & Chaney, J. M. (2015). On
muddled reasoning and mediation modeling. Basic and Applied Social
Psychology, 37(4), 214–225.
Griffiths, T. L., Chater, N., & Tenenbaum, J. B. (2024).
Bayesian models of cognition: Reverse engineering the mind. MIT
Press.
Grimes, D. R., Bauch, C. T., & Ioannidis, J. P. (2018). Modelling
science trustworthiness under publish or perish pressure. Royal
Society Open Science, 5(1), 171511.
Gunawan, D., Hawkins, G. E., Kohn, R., Tran, M.-N., & Brown, S. D.
(2022). Time-evolving psychological processes over repeated decisions.
Psychological Review, 129(3), 438–456.
Hanada, M., & Matsuura, S. (2022). MCMC from scratch.
Springer.
Hardt, M., & Recht, B. (2022). Patterns, predictions, and
actions: Foundations of machine learning. Princeton University
Press.
Hardwicke, T. E., Thibault, R. T., Kosie, J. E., Wallach, J. D.,
Kidwell, M. C., & Ioannidis, J. P. (2022). Estimating the prevalence
of transparency and reproducibility-related research practices in
psychology (2014–2017). Perspectives on Psychological Science,
17(1), 239–251.
Haslbeck, J. M., & Ryan, O. (2022). Recovering within-person
dynamics from psychological time series. Multivariate Behavioral
Research, 57(5), 735–766.
Hastings, W. K. (1970). Monte Carlo sampling
methods using Markov chains and their applications.
Biometrika, 57(1), 97–109.
Hayes, S. C., Hofmann, S. G., Stanton, C. E., Carpenter, J. K., Sanford,
B. T., Curtiss, J. E., & Ciarrochi, J. (2019). The role of the
individual in the coming era of process-based therapy. Behaviour
Research and Therapy, 117, 40–53.
Healy, K. (2018). Data visualization: A practical introduction.
Princeton University Press.
Hempel, C. G. (1970). La formazione dei concetti e delle teorie
nella scienza empirica. Feltrinelli.
Hirsch, C. R., Meeten, F., Krahé, C., & Reeder, C. (2016). Resolving
ambiguity in emotional disorders: The nature and role of interpretation
biases. Annual Review of Clinical Psychology, 12(1),
281–305.
Hitchcock, P. F., Fried, E. I., & Frank, M. J. (2022). Computational
psychiatry needs time and context. Annual Review of Psychology,
73(1), 243–270.
Hoffman, M. D., Gelman, A., et al. (2014). The no-u-turn sampler:
Adaptively setting path lengths in hamiltonian monte carlo. Journal
of Machine Learning Research, 15(1), 1593–1623.
Hoffmann, T., Hofman, A., & Wagenmakers, E.-J. (2022). Bayesian
tests of two proportions: A tutorial with r and JASP.
Methodology, 18(4), 239–277.
Hoogeveen, S., Sarafoglou, A., & Wagenmakers, E.-J. (2020).
Laypeople can predict which social-science studies will be replicated
successfully. Advances in Methods and Practices in Psychological
Science, 3(3), 267–285.
Howson, C., & Urbach, P. (2006). Scientific reasoning: The
bayesian approach. Open Court Publishing.
Huntington-Klein, N. (2021). The effect: An introduction to research
design and causality. Chapman; Hall/CRC.
Ioannidis, J. P. (2005). Why most published research findings are false.
PLoS Medicine, 2(8), e124.
Ioannidis, J. P. (2019). What have we (not) learnt from millions of
scientific papers with p values? The American Statistician,
73(sup1), 20–25.
Jaynes, E. T. (2003). Probability theory: The logic of science.
Cambridge University Press.
Johnson, A. A., Ott, M., & Dogucu, M. (2022). Bayes Rules! An Introduction to Bayesian Modeling with
R. CRC Press.
Jung, K., Shavitt, S., Viswanathan, M., & Hilbe, J. M. (2014).
Female hurricanes are deadlier than male hurricanes. Proceedings of
the National Academy of Sciences, 111(24), 8782–8787.
Kanazawa, S. (2007). Beautiful parents have more daughters: A further
implication of the generalized trivers–willard hypothesis (gTWH).
Journal of Theoretical Biology, 244(1), 133–140.
Kaplan, D. (2023). Bayesian statistics for the social sciences.
Guilford Publications.
Karataş, M., & Cutright, K. M. (2023). Thinking about god increases
acceptance of artificial intelligence in decision-making.
Proceedings of the National Academy of Sciences,
120(33), e2218961120.
Khaw, M. W., Glimcher, P. W., & Louie, K. (2017). Normalized value
coding explains dynamic adaptation in the human valuation process.
Proceedings of the National Academy of Sciences,
114(48), 12696–12701.
Knight, E., Neal, A., Palada, H., & Ballard, T. (2023). A tutorial
on bayesian modeling of change across time, individuals, and groups.
Computational Brain & Behavior, 6(4), 697–718.
Korbmacher, M., Azevedo, F., Pennington, C. R., Hartmann, H., Pownall,
M., Schmidt, K., Elsherif, M., Breznau, N., Robertson, O., Kalandadze,
T., et al. (2023). The replication crisis has led to positive
structural, procedural, and community changes. Communications
Psychology, 1(1), 3.
Kruschke, J. (2014). Doing bayesian data analysis: A
tutorial with R, JAGS, and Stan. Academic
Press.
Kullback, S., & Leibler, R. A. (1951). On information and
sufficiency. The Annals of Mathematical Statistics,
22(1), 79–86.
Labatut, B. (2021). Quando abbiamo smesso di capire il mondo.
Adelphi Edizioni spa.
Lakens, D. (2015). On the challenges of drawing conclusions from
p-values just below 0.05. PeerJ, 3, e1142.
Larson, C., Kaplan, D., Girolamo, T., Kover, S. T., & Eigsti, I.-M.
(2023). A bayesian statistics tutorial for clinical research: Prior
distributions and meaningful results for small clinical samples.
Journal of Clinical Psychology, 79(11), 2602–2624.
Leemput, I. A. van de, Wichers, M., Cramer, A. O., Borsboom, D.,
Tuerlinckx, F., Kuppens, P., Van Nes, E. H., Viechtbauer, W., Giltay, E.
J., Aggen, S. H., et al. (2014). Critical slowing down as early warning
for the onset and termination of depression. Proceedings of the
National Academy of Sciences, 111(1), 87–92.
Leppik, I., Dreifuss, F., Porter, R., Bowman, T., Santilli, N., Jacobs,
M., Crosby, C., Cloyd, J., Stackman, J., Graves, N., et al. (1987). A
controlled study of progabide in partial seizures: Methodology and
results. Neurology, 37(6), 963–963.
Lilienfeld, S. O., & Strother, A. N. (2020). Psychological
measurement and the replication crisis: Four sacred cows. Canadian
Psychology/Psychologie Canadienne, 61(4), 281–288.
Lim, L., Bannert, M., Graaf, J. van der, Singh, S., Fan, Y.,
Surendrannair, S., Rakovic, M., Molenaar, I., Moore, J., & Gašević,
D. (2023). Effects of real-time analytics-based personalized scaffolds
on students’ self-regulated learning. Computers in Human
Behavior, 139, 107547.
Lindley, D. V. (2013). Understanding uncertainty. John Wiley
& Sons.
Loken, E., & Gelman, A. (2017). Measurement error and the
replication crisis. Science, 355(6325), 584–585.
Loredo, T. J., & Wolpert, R. L. (2024). Bayesian inference: More
than bayes’s theorem. Frontiers in Astronomy and Space
Sciences, 11, 1326926.
Lundberg, I., Johnson, R., & Stewart, B. M. (2021). What is your
estimand? Defining the target quantity connects statistical evidence to
theory. American Sociological Review, 86(3), 532–565.
Marr, D. (2010). Vision: A computational investigation into the
human representation and processing of visual information. MIT
press.
Martin, O. (2024). Bayesian analysis with python. Packt
Publishing Ltd.
Martin, O. A., Kumar, R., & Lao, J. (2022). Bayesian modeling
and computation in python. CRC Press.
Matcha, W., Gasevic, D., Jovanovic, J., Pardo, A., Lim, L.,
Maldonado-Mahauad, J., Gentili, S., Pérez-Sanagustı́n, M., Tsai, Y.-S.,
et al. (2020). Analytics of learning strategies: Role of course design
and delivery modality authors. Journal of Learning Analytics,
7(2), 45–71.
Matter, U. (2025). Data analysis with AI and
R (1st Edition). Manning Publications.
Maul, A., Irribarra, D. T., & Wilson, M. (2016). On the
philosophical foundations of psychological measurement.
Measurement, 79, 311–320.
McElreath, R. (2020). Statistical rethinking: A
Bayesian course with examples in R and
Stan (2nd Edition). CRC Press.
McKinney, W. (2022). Python for data analysis. " O’Reilly
Media, Inc.".
Meehl, P. E. (1967). Theory-testing in psychology and physics: A
methodological paradox. Philosophy of Science, 34(2),
103–115.
Meehl, P. E. (2012). Why summaries of research on psychological theories
are often uninterpretable. In Improving inquiry in social
science (pp. 13–59). Routledge.
Mehr, S. A., Song, L. A., & Spelke, E. S. (2016). For 5-month-old
infants, melodies are social. Psychological Science,
27(4), 486–501.
Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H.,
& Teller, E. (1953). Equation of state calculations by fast
computing machines. The Journal of Chemical Physics,
21(6), 1087–1092.
Mildiner Moraga, S., Bos, F. M., Doornbos, B., Bruggeman, R., Krieke, L.
van der, Snippe, E., & Aarts, E. (2024). Evidence for mood
instability in patients with bipolar disorder: Applying multilevel
hidden markov modeling to intensive longitudinal ecological momentary
assessment data. Journal of Psychopathology and Clinical
Science.
Mogg, K., Bradbury, K. E., & Bradley, B. P. (2006). Interpretation
of ambiguous information in clinical depression. Behaviour Research
and Therapy, 44(10), 1411–1419.
Moore, D. A., Schroeder, J., Bailey, E. R., Gershon, R., Moore, J. E.,
& Simmons, J. P. (2024). Does thinking about god increase acceptance
of artificial intelligence in decision-making? Proceedings of the
National Academy of Sciences, 121(31), e2402315121.
Munger, K. (2023). Temporal validity as meta-science. Research &
Politics, 10(3), 20531680231187271.
Murray, E. J., & Carr, K. C. (2024). Measuring racial sentiment
using social media is harder than it seems. Epidemiology,
35(1), 60–63.
Muthukrishna, M., & Henrich, J. (2019). A problem in theory.
Nature Human Behaviour, 3(3), 221–229.
Myers, C. E., Interian, A., & Moustafa, A. A. (2022). A practical
introduction to using the drift diffusion model of decision-making in
cognitive psychology, neuroscience, and health sciences. Frontiers
in Psychology, 13, 1039172.
Nelson, L. D., Simmons, J., & Simonsohn, U. (2018). Psychology’s
renaissance. Annual Review of Psychology, 69(1),
511–534.
Neyman, J. (1923). Sur les applications de la théorie des
probabilités aux experiences agricoles: Essai des
principes. Roczniki Nauk Rolniczych, 10(1), 1–51.
Nicenboim, B., Schad, D., & Vasishth, S. (2024). An introduction to
bayesian data analysis for cognitive science. Chapman and
Hall/CRC.
Nobles, M. (2000). Shades of citizenship: Race and the census in
modern politics. Stanford University Press.
Nosek, B. A., Spies, J. R., & Motyl, M. (2012). Scientific utopia:
II. Restructuring incentives and practices to promote truth over
publishability. Perspectives on Psychological Science,
7(6), 615–631.
Notebaert, W., Houtman, F., Van Opstal, F., Gevers, W., Fias, W., &
Verguts, T. (2009). Post-error slowing: An orienting account.
Cognition, 111(2), 275–279.
Nuzzo, R. (2014). Statistical errors. Nature,
506(7487), 150–152.
O’Hagan, A. (2019). Expert knowledge elicitation: Subjective but
scientific. The American Statistician, 73(sup1),
69–81.
Oberauer, K., & Lewandowsky, S. (2019). Addressing the theory crisis
in psychology. Psychonomic Bulletin & Review, 26,
1596–1618.
Oijen, M. van. (2024). Bayesian compendium (2nd ed.). Springer.
https://doi.org/10.1007/978-3-031-66085-6
Palminteri, S., Khamassi, M., Joffily, M., & Coricelli, G. (2015).
Contextual modulation of value signals in reward and punishment
learning. Nature Communications, 6(1), 8096.
Papadatou-Pastou, M., Ntolka, E., Schmitz, J., Martin, M., Munafò, M.
R., Ocklenburg, S., & Paracchini, S. (2020). Human handedness: A
meta-analysis. Psychological Bulletin, 146(6),
481–524.
Paxinou, E., Kalles, D., Panagiotakopoulos, C. T., & Verykios, V. S.
(2021). Analyzing sequence data with markov chain models in scientific
experiments. SN Computer Science, 2(5), 385.
Pearl, J. (1995). Causal diagrams for empirical research.
Biometrika, 82(4), 669–688.
Pearl, J. (2009). Causality. Cambridge University Press.
Pearl, J., Glymour, M., & Jewell, N. P. (2016). Causal inference
in statistics: A primer. John Wiley & Sons.
Pearl, J., & Mackenzie, D. (2018). The book of why: The new
science of cause and effect. Basic books.
Peeters, W., Saqr, M., & Viberg, O. (2020). Applying learning
analytics to map students’ self-regulated learning tactics in an
academic writing course. Proceedings of the 28th International
Conference on Computers in Education, 1, 245–254.
Petersen, I. T. (2024). Principles of psychological assessment: With
applied examples in r. CRC Press.
Pines, A., Tozzi, L., Bertrand, C., Keller, A. S., Zhang, X.,
Whitfield-Gabrieli, S., Hastie, T., Larsen, B., Leikauf, J., &
Williams, L. M. (2024). Psychiatric symptoms, cognition, and symptom
severity in children. JAMA Psychiatry. https://doi.org/10.1001/jamapsychiatry.2024.2399
Press, S. J. (2009). Subjective and objective bayesian statistics:
Principles, models, and applications. John Wiley & Sons.
Pulcu, E., & Browning, M. (2019). The misestimation of uncertainty
in affective disorders. Trends in Cognitive Sciences,
23(10), 865–875.
Rafaeli, E., & Revelle, W. (2006). A premature consensus: Are
happiness and sadness truly opposite affects? Motivation and
Emotion, 30, 1–12.
Rains, S. A., & Richards, A. S. (2024). US state vaccine mandates
did not influence COVID-19 vaccination rates but reduced uptake of
COVID-19 boosters and flu vaccines compared to bans on vaccine
restrictions. Proceedings of the National Academy of Sciences,
121(8), e2313610121.
Ramsey, F. P. (1926). Truth and probability. In Readings in formal
epistemology: sourcebook (pp. 21–45). Springer.
Rescorla, R. A., & Wagner, A. R. (1972). A theory of pavlovian
conditioning: Variations in the effectiveness of reinforcement and
non-reinforcement. Classical Conditioning II, Current Research and
Theory, 2, 64–69.
Riederer, E. (2021). Causal design patterns for data analysts.
https://emilyriederer.netlify.app/post/causal-design-patterns/
Riha, A. E., Siccha, N., Oulasvirta, A., & Vehtari, A. (2024).
Supporting bayesian modelling workflows with iterative filtering for
multiverse analysis. arXiv Preprint arXiv:2404.01688.
Ritchie, S. J., Wiseman, R., & French, C. C. (2012). Failing the
future: Three unsuccessful attempts to replicate bem’s ‘retroactive
facilitation of recall’effect. PloS One, 7(3), e33423.
Roger, E. (1987). Stan ulam, john von neumann, and the monte carlo
method. Los Alamos Science, 15, 131–137.
Rosa, L., Rosa, E., Sarner, L., & Barrett, S. (1998). A close look
at therapeutic touch. Jama, 279(13), 1005–1010.
Ross, C. T., Winterhalder, B., & McElreath, R. (2021). Racial
disparities in police use of deadly force against unarmed individuals
persist after appropriately benchmarking shooting data on violent crime
rates. Social Psychological and Personality Science,
12(3), 323–332.
Rowland, Z., & Wenzel, M. (2020). Mindfulness and affect-network
density: Does mindfulness facilitate disengagement from affective
experiences in daily life? Mindfulness, 11, 1253–1266.
Rubin, D. B. (1974). Estimating causal effects of treatments in
randomized and nonrandomized studies. Journal of Educational
Psychology, 66(5), 688–701.
Russell, J. A. (1980). A circumplex model of affect. Journal of
Personality and Social Psychology, 39(6), 1161–1178.
Saqr, M., & López-Pernas, S. (2023). The temporal dynamics of online
problem-based learning: Why and when sequence matters. International
Journal of Computer-Supported Collaborative Learning,
18(1), 11–37.
Scheel, A. M., Schijen, M. R., & Lakens, D. (2021). An excess of
positive results: Comparing the standard psychology literature with
registered reports. Advances in Methods and Practices in
Psychological Science, 4(2), 25152459211007467.
Schennach, S. M. (2016). Recent advances in the measurement error
literature. Annual Review of Economics, 8(1), 341–377.
Scholz, U., Stadler, G., Berli, C., Lüscher, J., & Knoll, N. (2021).
How do people experience and respond to social control from their
partner? Three daily diary studies. Frontiers in Psychology,
11, 613546.
Schoot, V. R. de, Veen, D., Smeets, L., & Winter, S. (2020). A
tutorial on using the WAMBS checklist to avoid the misuse of bayesian
statistics (pp. 30–49). Routledge.
Schulz, E., & Gershman, S. J. (2019). The algorithmic architecture
of exploration in the human brain. Current Opinion in
Neurobiology, 55, 7–14.
Schumacher, L., Bürkner, P.-C., Voss, A., Köthe, U., & Radev, S. T.
(2023). Neural superstatistics for bayesian estimation of dynamic
cognitive models. Scientific Reports, 13(1), 13778.
Shiffrin, R. M., & Schneider, W. (1977). Controlled and automatic
human information processing: II. Perceptual learning, automatic
attending and a general theory. Psychological Review,
84(2), 127–190.
Shrout, P. E., & Rodgers, J. L. (2018). Psychology, science, and
knowledge construction: Broadening perspectives from the replication
crisis. Annual Review of Psychology, 69(1), 487–510.
Simchon, A., Hadar, B., & Gilead, M. (2023). A computational text
analysis investigation of the relation between personal and linguistic
agency. Communications Psychology, 1(1), 23.
Simmons, J. P., Nelson, L. D., & Simonsohn, U. (2011).
False-positive psychology: Undisclosed flexibility in data collection
and analysis allows presenting anything as significant.
Psychological Science, 22(11), 1359–1366.
Skinner, B. F. (1965). Science and human behavior. Simon;
Schuster.
Smaldino, P. E., & McElreath, R. (2016). The natural selection of
bad science. Royal Society Open Science, 3(9), 160384.
Sommet, N., Weissman, D. L., Cheutin, N., & Elliot, A. J. (2023).
How many participants do i need to test an interaction? Conducting an
appropriate power analysis and achieving sufficient power to detect an
interaction. Advances in Methods and Practices in Psychological
Science, 6(3), 25152459231178728.
Sorensen, T., & Vasishth, S. (2015). Bayesian linear mixed models
using stan: A tutorial for psychologists, linguists, and cognitive
scientists. arXiv Preprint arXiv:1506.06201.
Soto, F. A., Vogel, E. H., Uribe-Bahamonde, Y. E., & Perez, O. D.
(2023). Why is the rescorla-wagner model so influential?
Neurobiology of Learning and Memory, 204, 107794.
Spake, R., Bowler, D. E., Callaghan, C. T., Blowes, S. A., Doncaster, C.
P., Antao, L. H., Nakagawa, S., McElreath, R., & Chase, J. M.
(2023). Understanding “it depends” in ecology: A guide to
hypothesising, visualising and interpreting statistical interactions.
Biological Reviews, 98(4), 983–1002.
Spector, A. J. (1956). Expectations, fulfillment, and morale. The
Journal of Abnormal and Social Psychology, 52(1), 51–56.
Speelman, C. P., Parker, L., Rapley, B. J., & McGann, M. (2024).
Most psychological researchers assume their samples are ergodic:
Evidence from a year of articles in three major journals. Collabra:
Psychology, 10(1).
Steegen, S., Tuerlinckx, F., Gelman, A., & Vanpaemel, W. (2016).
Increasing transparency through a multiverse analysis. Perspectives
on Psychological Science, 11(5), 702–712.
Stevens, S. S. (1946). On the theory of scales of measurement.
Science, 103(2684), 677–680.
Stigler, S. (1986). The history of statistics. Belknap Harvard.
Stone, J. V. (2022). Information theory: A tutorial introduction,
2nd edition.
Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An
introduction, second edi. The MIT Press.
Tackett, J. L., Brandes, C. M., King, K. M., & Markon, K. E. (2019).
Psychology’s replication crisis and clinical psychological science.
Annual Review of Clinical Psychology, 15(1), 579–604.
Tomitaka, S., Kawasaki, Y., Ide, K., Akutagawa, M., Ono, Y., &
Furukawa, T. A. (2019). Distribution of psychological distress is stable
in recent decades and follows an exponential pattern in the US
population. Scientific Reports, 9(1), 11982.
Törmänen, T., Järvenoja, H., Saqr, M., Malmberg, J., & Järvelä, S.
(2022). A person-centered approach to study students’ socio-emotional
interaction profiles and regulation of collaborative learning.
Frontiers in Education, 7, 866612.
Törmänen, T., Järvenoja, H., Saqr, M., Malmberg, J., & Järvelä, S.
(2023). Affective states and regulation of learning during
socio-emotional interactions in secondary school collaborative groups.
British Journal of Educational Psychology, 93, 48–70.
Van Dongen, N., Bork, R. van, Finnemann, A., Haslbeck, J., Maas, H. L.
van der, Robinaugh, D. J., Ron, J. de, Sprenger, J., & Borsboom, D.
(2024). Productive explanation: A framework for evaluating explanations
in psychological science. Psychological Review.
Vehtari, A., Gelman, A., Simpson, D., Carpenter, B., & Bürkner,
P.-C. (2021). Rank-normalization, folding, and localization: An improved
r ̂ for assessing convergence of MCMC (with discussion). Bayesian
Analysis, 16(2), 667–718.
Wagenmakers, E.-J., Lee, M., Lodewyckx, T., & Iverson, G. J. (2008).
Bayesian versus frequentist inference. Bayesian Evaluation of
Informative Hypotheses, 181–207.
Wagenmakers, E.-J., Marsman, M., Jamil, T., Ly, A., Verhagen, J., Love,
J., Selker, R., Gronau, Q. F., Šmı́ra, M., Epskamp, S., et al. (2018).
Bayesian inference for psychology. Part i: Theoretical advantages and
practical ramifications. Psychonomic Bulletin & Review,
25, 35–57.
Ward, A., & Mann, T. (2022). Control yourself: Broad implications of
narrowed attention. Perspectives on Psychological Science,
17(6), 1692–1703.
Ware, J. J., & Munafò, M. R. (2015). Significance chasing in
research practice: Causes, consequences and possible solutions.
Addiction, 110(1), 4–8.
Wasserstein, R. L., & Lazar, N. A. (2016). The ASA’s
statement on p-values: Context, process, and purpose. The American
Statistician, 70(2), 129–133.
Watson, J. B. (1913). Psychology as the behaviorist views it.
Psychological Review, 20(2), 158.
West, R. M. (2022). Best practice in statistics: The use of log
transformation. Annals of Clinical Biochemistry,
59(3), 162–165.
Westreich, D., & Greenland, S. (2013). The table 2 fallacy:
Presenting and interpreting confounder and modifier coefficients.
American Journal of Epidemiology, 177(4), 292–298.
Wickham, H., Çetinkaya-Rundel, M., & Grolemund, G. (2023). R for
data science. " O’Reilly Media, Inc.".
Wilke, C. O. (2019). Fundamentals of data visualization: A primer on
making informative and compelling figures. O’Reilly Media.
Wilkinson, G., & Rogers, C. (1973). Symbolic description of
factorial models for analysis of variance. Journal of the Royal
Statistical Society Series C: Applied Statistics, 22(3),
392–399.
Williams, W. C., Haque, E., Mai, B., & Venkatraman, V. (2023). Face
masks influence emotion judgments of facial expressions: A
drift–diffusion model. Scientific Reports, 13(1),
8842.
Wilms, R., Mäthner, E., Winnen, L., & Lanwehr, R. (2021). Omitted
variable bias: A threat to estimating causal relationships. Methods
in Psychology, 5, 100075.
Yang, Y., Youyou, W., & Uzzi, B. (2020). Estimating the deep
replicability of scientific findings using human and artificial
intelligence. Proceedings of the National Academy of Sciences,
117(20), 10762–10768.
Yaple, Z. A., & Yu, R. (2019). Fractionating adaptive learning: A
meta-analysis of the reversal learning paradigm. Neuroscience &
Biobehavioral Reviews, 102, 85–94.
Yarkoni, T. (2022). The generalizability crisis. Behavioral and
Brain Sciences, 45, e1.
Youyou, W., Yang, Y., & Uzzi, B. (2023). A discipline-wide
investigation of the replicability of psychology papers over the past
two decades. Proceedings of the National Academy of Sciences,
120(6), e2208863120.
Yu, B., & Barter, R. L. (2024). Veridical data science: The
practice of responsible data analysis and decision making. MIT
Press.
Zanesco, A. P. (2020). Quantifying streams of thought during cognitive
task performance using sequence analysis. Behavior Research
Methods, 52(6), 2417–2437.
Zetsche, U., Buerkner, P.-C., & Renneberg, B. (2019). Future
expectations in clinical depression: Biased or realistic? Journal of
Abnormal Psychology, 128(7), 678.
Zwet, E. van, Gelman, A., Greenland, S., Imbens, G., Schwab, S., &
Goodman, S. N. (2023). A new look at p values for randomized clinical
trials. NEJM Evidence, 3(1), EVIDoa2300003.