Riferimenti bibliografici

Albert, J., & Hu, J. (2019). Probability and bayesian modeling. Chapman; Hall/CRC.
Bechdel, A. (1986). Dykes to watch out for. Firebrand Books.
Bergh, D. van den, Van Doorn, J., Marsman, M., Draws, T., Van Kesteren, E.-J., Derks, K., Dablander, F., Gronau, Q. F., Kucharskỳ, Š., Gupta, A. R. K. N., et al. (2020). A tutorial on conducting and interpreting a bayesian ANOVA in JASP. L’Année Psychologique, 120(1), 73–96.
Carpenter, B., Gelman, A., Hoffman, M. D., Lee, D., Goodrich, B., Betancourt, M., Brubaker, M., Guo, J., Li, P., & Riddell, A. (2017). Stan: A probabilistic programming language. Journal of Statistical Software, 76(1), 1–32.
Caudek, C., & Luccio, R. (2001). Statistica per psicologi.
Eckhardt, R. (1987). Stan Ulam, John Von Neumann and the Monte Carlo Method. Los Alamos Science Special Issue.
Finetti, B. de. (1931). Probabilismo. Logos, 163–219.
Gautret, P., Lagier, J. C., Parola, P., Meddeb, L., Mailhe, M., Doudier, B., & Honoré, S. (2020). Hydroxychloroquine and azithromycin as a treatment of COVID-19: Results of an open-label non-randomized clinical trial. International Journal of Antimicrobial Agents.
Gelman, A., Carlin, J. B., Stern, H. S., & Rubin, D. B. (1995). Bayesian data analysis. Chapman; Hall/CRC.
Gelman, A., Hill, J., & Vehtari, A. (2020). Regression and other stories. Cambridge University Press.
Gelman, A., Hwang, J., & Vehtari, A. (2014). Understanding predictive information criteria for bayesian models. Statistics and Computing, 24(6), 997–1016.
Gibson, E., & Wu, H.-H. I. (2013). Processing chinese relative clauses in context. Language and Cognitive Processes, 28(1-2), 125–155.
Hoeting, J. A., Madigan, D., Raftery, A. E., & Volinsky, C. T. (1999). Bayesian model averaging: A tutorial (with comments by m. Clyde, david draper and EI george, and a rejoinder by the authors. Statistical Science, 14(4), 382–417.
Horstmann, A. C., Bock, N., Linhuber, E., Szczuka, J. M., Straßmann, C., & Krämer, N. C. (2018). Do a robot’s social skills and its objection discourage interactants from switching the robot off? PloS One, 13(7), e0201581.
Hulme, O. J., Wagenmakers, E. J., Damkier, P., Madelung, C. F., Siebner, H. R., Helweg-Larsen, J., & Madsen, K. H. (2020). Reply to gautret et al. 2020: A bayesian reanalysis of the effects of hydroxychloroquine and azithromycin on viral carriage in patients with COVID-19. medRxiv.
Johnson, A. A., Ott, M., & Dogucu, M. (2022). Bayes Rules! An Introduction to Bayesian Modeling with R. CRC Press.
Kennedy-Shaffer, L. (2019). Before p< 0.05 to beyond p< 0.05: Using history to contextualize p-values and significance testing. The American Statistician, 73(sup1), 82–90.
Kruschke, J. (2014). Doing bayesian data analysis: A tutorial with R, JAGS, and Stan. Academic Press.
Lazic, S. E., Semenova, E., & Williams, D. P. (2020). Determining organ weight toxicity with bayesian causal models: Improving on the analysis of relative organ weights. Scientific Reports, 10(1), 1–12.
Lee, M. D., & Wagenmakers, E.-J. (2014). Bayesian cognitive modeling: A practical course. Cambridge university press.
Lord, F. M. (1950). Efficiency of prediction when a regression equation from one sample is used in a new sample. ETS Research Bulletin Series, 1950(2), 1–6.
Martin, O. A., Kumar, R., & Lao, J. (2022). Bayesian modeling and computation in python. CRC Press.
McElreath, R. (2020). Statistical rethinking: A Bayesian course with examples in R and Stan (2nd Edition). CRC Press.
Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E. (1953). Equation of state calculations by fast computing machines. The Journal of Chemical Physics, 21(6), 1087–1092.
Milgram, S. (1963). Behavioral study of obedience. The Journal of Abnormal and Social Psychology, 67(4), 371–378.
Navarro, D. J. (2019). Between the devil and the deep blue sea: Tensions between scientific judgement and statistical model selection. Computational Brain & Behavior, 2(1), 28–34.
Nuggerud-Galeas, S., Sáez-Benito Suescun, L., Berenguer Torrijo, N., Sáez-Benito Suescun, A., Aguilar-Latorre, A., Magallón Botaya, R., & Oliván Blázquez, B. (2020). Analysis of depressive episodes, their recurrence and pharmacologic treatment in primary care patients: A retrospective descriptive study. Plos One, 15(5), e0233454.
Rubin, D. B. (1981). Estimation in parallel randomized experiments. Journal of Educational Statistics, 6(4), 377–401.
Sawilowsky, S. S. (2009). New effect size rules of thumb. Journal of Modern Applied Statistical Methods, 8(2), 26.
Schmettow, M. (2021). New statistics for design researchers. Springer.
Schoot, R. van de, Depaoli, S., King, R., Kramer, B., Märtens, K., Tadesse, M. G., Vannucci, M., Gelman, A., Veen, D., Willemsen, J., & Yau, C. (2021). Bayesian statistics and modelling. Nature Reviews Methods Primer, 1(1), 1–26.
Song, Q. C., Tang, C., & Wee, S. (2021). Making sense of model generalizability: A tutorial on cross-validation in r and shiny. Advances in Methods and Practices in Psychological Science, 4(1), 2515245920947067.
Sorensen, T., & Vasishth, S. (2015). Bayesian linear mixed models using stan: A tutorial for psychologists, linguists, and cognitive scientists. arXiv Preprint arXiv:1506.06201.
Stevens, S. S. (1946). On the theory of scales of measurement. Science, 103(2684), 677–680.
Tufte, E. R. (2001). The visual display of quantitative information. Graphics press Cheshire, CT.
Vehtari, A., Gelman, A., & Gabry, J. (2017). Practical bayesian model evaluation using leave-one-out cross-validation and WAIC. Statistics and Computing, 27(5), 1413–1432.
Zetsche, U., Bürkner, P.-C., & Renneberg, B. (2019). Future expectations in clinical depression: Biased or realistic? Journal of Abnormal Psychology, 128(7), 678–688.