Riferimenti bibliografici
Albert, J., & Hu, J. (2019). Probability and bayesian
modeling. Chapman; Hall/CRC.
Bechdel, A. (1986). Dykes to watch out for. Firebrand Books.
Bergh, D. van den, Van Doorn, J., Marsman, M., Draws, T., Van Kesteren,
E.-J., Derks, K., Dablander, F., Gronau, Q. F., Kucharskỳ, Š., Gupta, A.
R. K. N., et al. (2020). A tutorial on conducting and interpreting a
bayesian ANOVA in JASP. L’Année Psychologique,
120(1), 73–96.
Carpenter, B., Gelman, A., Hoffman, M. D., Lee, D., Goodrich, B.,
Betancourt, M., Brubaker, M., Guo, J., Li, P., & Riddell, A. (2017).
Stan: A probabilistic programming language. Journal of Statistical
Software, 76(1), 1–32.
Caudek, C., & Luccio, R. (2001). Statistica per psicologi.
Eckhardt, R. (1987). Stan Ulam, John Von Neumann
and the Monte Carlo Method. Los Alamos Science Special
Issue.
Finetti, B. de. (1931). Probabilismo. Logos, 163–219.
Gautret, P., Lagier, J. C., Parola, P., Meddeb, L., Mailhe, M., Doudier,
B., & Honoré, S. (2020). Hydroxychloroquine and azithromycin as a
treatment of COVID-19: Results of an open-label non-randomized clinical
trial. International Journal of Antimicrobial Agents.
Gelman, A., Carlin, J. B., Stern, H. S., & Rubin, D. B. (1995).
Bayesian data analysis. Chapman; Hall/CRC.
Gelman, A., Hill, J., & Vehtari, A. (2020). Regression and other
stories. Cambridge University Press.
Gelman, A., Hwang, J., & Vehtari, A. (2014). Understanding
predictive information criteria for bayesian models. Statistics and
Computing, 24(6), 997–1016.
Gibson, E., & Wu, H.-H. I. (2013). Processing chinese relative
clauses in context. Language and Cognitive Processes,
28(1-2), 125–155.
Hoeting, J. A., Madigan, D., Raftery, A. E., & Volinsky, C. T.
(1999). Bayesian model averaging: A tutorial (with comments by m. Clyde,
david draper and EI george, and a rejoinder by the authors.
Statistical Science, 14(4), 382–417.
Horstmann, A. C., Bock, N., Linhuber, E., Szczuka, J. M., Straßmann, C.,
& Krämer, N. C. (2018). Do a robot’s social skills and its objection
discourage interactants from switching the robot off? PloS One,
13(7), e0201581.
Hulme, O. J., Wagenmakers, E. J., Damkier, P., Madelung, C. F., Siebner,
H. R., Helweg-Larsen, J., & Madsen, K. H. (2020). Reply to gautret
et al. 2020: A bayesian reanalysis of the effects of hydroxychloroquine
and azithromycin on viral carriage in patients with COVID-19.
medRxiv.
Johnson, A. A., Ott, M., & Dogucu, M. (2022). Bayes Rules! An Introduction to Bayesian Modeling with
R. CRC Press.
Kennedy-Shaffer, L. (2019). Before p< 0.05 to beyond p< 0.05:
Using history to contextualize p-values and significance testing.
The American Statistician, 73(sup1), 82–90.
Kruschke, J. (2014). Doing bayesian data analysis: A
tutorial with R, JAGS, and Stan. Academic
Press.
Lazic, S. E., Semenova, E., & Williams, D. P. (2020). Determining
organ weight toxicity with bayesian causal models: Improving on the
analysis of relative organ weights. Scientific Reports,
10(1), 1–12.
Lee, M. D., & Wagenmakers, E.-J. (2014). Bayesian cognitive
modeling: A practical course. Cambridge university press.
Lord, F. M. (1950). Efficiency of prediction when a regression equation
from one sample is used in a new sample. ETS Research Bulletin
Series, 1950(2), 1–6.
Martin, O. A., Kumar, R., & Lao, J. (2022). Bayesian modeling
and computation in python. CRC Press.
McElreath, R. (2020). Statistical rethinking: A
Bayesian course with examples in R and
Stan (2nd Edition). CRC Press.
Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H.,
& Teller, E. (1953). Equation of state calculations by fast
computing machines. The Journal of Chemical Physics,
21(6), 1087–1092.
Milgram, S. (1963). Behavioral study of obedience. The Journal of
Abnormal and Social Psychology, 67(4), 371–378.
Nuggerud-Galeas, S., Sáez-Benito Suescun, L., Berenguer Torrijo, N.,
Sáez-Benito Suescun, A., Aguilar-Latorre, A., Magallón Botaya, R., &
Oliván Blázquez, B. (2020). Analysis of depressive episodes, their
recurrence and pharmacologic treatment in primary care patients: A
retrospective descriptive study. Plos One, 15(5),
e0233454.
Rubin, D. B. (1981). Estimation in parallel randomized experiments.
Journal of Educational Statistics, 6(4), 377–401.
Sawilowsky, S. S. (2009). New effect size rules of thumb. Journal of
Modern Applied Statistical Methods, 8(2), 26.
Schmettow, M. (2021). New statistics for design researchers.
Springer.
Schoot, R. van de, Depaoli, S., King, R., Kramer, B., Märtens, K.,
Tadesse, M. G., Vannucci, M., Gelman, A., Veen, D., Willemsen, J., &
Yau, C. (2021). Bayesian statistics and modelling. Nature Reviews
Methods Primer, 1(1), 1–26.
Song, Q. C., Tang, C., & Wee, S. (2021). Making sense of model
generalizability: A tutorial on cross-validation in r and shiny.
Advances in Methods and Practices in Psychological Science,
4(1), 2515245920947067.
Sorensen, T., & Vasishth, S. (2015). Bayesian linear mixed models
using stan: A tutorial for psychologists, linguists, and cognitive
scientists. arXiv Preprint arXiv:1506.06201.
Stevens, S. S. (1946). On the theory of scales of measurement.
Science, 103(2684), 677–680.
Tufte, E. R. (2001). The visual display of quantitative
information. Graphics press Cheshire, CT.
Vehtari, A., Gelman, A., & Gabry, J. (2017). Practical bayesian
model evaluation using leave-one-out cross-validation and WAIC.
Statistics and Computing, 27(5), 1413–1432.
Zetsche, U., Bürkner, P.-C., & Renneberg, B. (2019). Future
expectations in clinical depression: Biased or realistic?
Journal of Abnormal Psychology, 128(7), 678–688.