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The fidelity of visual working memory was assessed for faces and non-face objects. In two experiments, four
levels of memory load (1, 2, 3, or 4 items) were combined with four perceptual distances between probe and
study items, with maximum item confusability occurring for the minimum memory load. Under these condi-
tions, recognition memory for multiple faces exceeded that of a single face. This result was primarily due to
the higher false alarm rates for faces than non-face objects, even though the two classes of stimuli had been
matched for perceptual discriminability. Control experiments revealed that this counterintuitive result
emerged only for old–new recognition choices based on near-threshold image differences. For non-face
objects, instead, recognition performance decreased with increasing memory load. It is speculated that the
lowmemorial discriminability of the transient properties of a face may serve the purpose of enhancing recog-
nition at the individual-exemplar level.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Visual working memory (WM) provides temporary storage and
manipulation of task-relevant information in cognitive processes such
as perception (Simons & Rensink, 2005), attention (Awh & Jonides,
2001), and visual search (Emrich, Al-Aidroos, Pratt, & Ferber, 2010).
WM maintains representations in an active and accessible state, but it
has a limited capacity (Cowan, 2006).

The fidelity with which visual information can be maintained in WM
depends on several factors. Large-scale or holistic information is extracted
over a very short time, whereas the consolidation of this information,
with the extraction of further details, requires longer presentation times
(Hollingworth & Henderson, 2002; Melcher, 2001, 2006). The precision
with which items are stored in WM is affected not only by encoding
time but also by set size. With the increase of set size, less memory re-
sources are allocated to each item and the precision with which items
are stored in WM decreases (Alvarez & Cavanagh, 2004; Bays, Catalao, &
Husain, 2009; Bays & Husain, 2008; Bays, Wu, & Husain, 2011; Brady,
Konkle, & Alvarez, 2011;Wilken &Ma, 2004). The fidelity ofWM also de-
pends on task demands. Within a change-blindness paradigm, for exam-
ple, the probability of a correct change detection is higher for the
objects of central interest in the visual scene (Rensink, O'Regan, &
Clark, 1997). Interestingly, the fidelity of WM is also influenced by
domain-specific expertise. Wagar andDixon (2005) showed that the prop-
erties of the information stored in WM depend on previous experience

requiring the repeated categorization of the target objects into different
families. In their study, a categorization learning phase improved the fi-
delity of WM for features diagnostic of category membership and im-
paired WM performance for non-diagnostic features.

The findings of Wagar and Dixon (2005) are consistent with recent
studies suggesting that learning to categorize objects causes (1) an
increase of perceptual discriminability along the dimensions relevant
to the learned categories (“acquired distinctiveness”), and (2) a de-
crease in discriminability along the irrelevant dimensions (“acquired
equivalence”). Goldstone and colleagues have proposed that “acquired
distinctiveness” and “acquired equivalence” occur under both explicitly
reinforced(i.e., supervised)andincidental (i.e.,unsupervised)categoryac-
quisition (Gureckis & Goldstone, 2008). Many studies have provided em-
pirical support for acquired distinctiveness (Goldstone & Steyvers, 2001;
Notman, Sowden, & Özgen, 2005; Op de Beeck, Wagemans, & Vogels,
2003;Özgen&Davies, 2002), but empirical evidence in support to acquire
equivalence ismore elusive (e.g., Folstein, Palmeri, & Gauthier, 2012).

Here I propose that “acquired distinctiveness” and “acquired
equivalence” modulate not only perceptual expertise, but also WM
recognition. For a WM task, “acquired equivalence” translates into
low-fidelity maintenance of transient and non-diagnostic features.
The present experiments study this phenomenon for objects of exper-
tise and objects of non-expertise.

1.1. “Acquired equivalence” in working memory

Based on the empirical findings described in the previous section,
it is here proposed that “acquired distinctiveness” and “acquired
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equivalence” modulate the fidelity of the of the representations held
in WM whenever experience induces a subordinate-shift in which
objects are identified at a subordinate level rather than at the basic-
level of categorization (Gauthier & Tarr, 1997; Johnson & Mervis,
1997; McGugin, Tanaka, Lebrecht, Tarr, & Gauthier, 2011; Nishimura
& Maurer, 2008; Scott, Tanaka, Sheinberg, & Curran, 2006; Tanaka,
Curran, & Sheinberg, 2005; Tanaka & Taylor, 1991). I propose that
(1) perceptual dimensions that are relevant for identification at the
individual level may receive a stronger memorial representation for
objects of expertise than non-expertise (“acquired distinctiveness”),
and (2) within-category image transformations that are irrelevant
for identification at the individual level maymanifest a lower memorial
discriminability (i.e., may be represented with lower fidelity in WM)
for objects of expertise than non-expertise (“acquired equivalence”).

Face identity recognition always requires the selection of the invariant
aspects that underlie face identity from the transient features generated
by speech production, facial expression, and variations of the viewing
conditions. Therefore, “acquired equivalence” may be especially impor-
tant for faces, also considering that recognition at the individual exemplar
is more important for faces than objects (Kanwisher, 2000).1

Previous work has shown a WM recognition advantage for faces
over objects. For example, Curby and Gauthier (2007) showed that
more faces can be stored in WM than other complex objects. Instead,
the present data will show that faces can be at a disadvantage with
respect to non-face objects, if the WM task concerns the recognition
of transient changes in appearance (i.e., subtle image variations) that
preserve the identity of the study items.

1.2. Plan of the experiments

In a pretest participants completed a same-different simultaneous
matching task to measure perceptual discriminability for pairs of faces
or cars lying on six morphing continua. In Experiments 1 and 2, partic-
ipants performed a delayedmatching task (Fig. 1) with the stimuli gen-
erated from themorph continua analyzed in the pretest. In Experiments
3a and 3b the difficulty of stimulus discriminability was decreased, in
order to facilitate recognition performance.

Four levels ofmemory load (1, 2, 3, or 4 items to be retained inmem-
ory) were combined with four distances between the probe and the
study items. In “different” trials, the physical differences between the
probe and the to-be-remembered items comprised (1) small or large
within-category distances (20 and 40 morphing steps, respectively),
and (2) small or large distances crossing the category boundary (60
and 80morphing steps, respectively)— see Tables 1 and 2. For the pres-
ent stimuli, a physical difference of 20 morph steps is near the percep-
tual threshold for discrimination and it corresponds to subtle changes
in appearance that preserve the identity of the item.

The items used in each single trial of Experiments 1 and 2 were
selected from one morphing continuum generated between two faces
or two cars. Different morphing continua were used to generate the
items employed in different trials (Fig. 2).

1.3. Hypotheses of the present study

Memory loads of 1 and 2 included small and large within-category
distances between the memory probe and the study items; memory
loads of 3 and 4 included small and large across-category distances
between the memory probe and the study items (see Table 2). The
focus of the present study is on the small within-category differences,
which were matched for perceptual discrimination across faces and
cars, for stimulus presentation durations of 1000 ms (see Pretest).

“Acquired equivalence” predicts that subtle image differences,
which are irrelevant for identification at the individual level, are
represented in WM with lower fidelity for objects of expertise than
non-expertise. In the present design, when the memory load was 1,
the “new” probe differed from the study item only in terms of subtle
image characteristics. Under these conditions, “acquired equivalence”
predicts a higher false alarm rate for faces than cars.

The present design does not allow to test whether the hit rates are
higher for faces than cars when the memory probe and the study
items are separated by the category boundary. In fact, the memory
loads 3 and 4 included both within-category and across-categories
differences between the probe and the study items. Note, moreover,
that the memory load of 2 included both small and large within-
category differences between the probe and the study items. Under
those conditions, “acquired equivalence” is not expected to occur.

In summary, when the memory load is larger than 1, there is no
reason to expect that “acquired equivalence” and “acquired distinc-
tiveness” may modulate in a different manner the hit rates and the
false alarm rates of faces and cars. When the memory load is 1, in-
stead, “acquired equivalence” predicts larger false alarm rates for
faces than cars. As a consequence, in the present design the relation-
ship between memory load and recognition accuracy, as assessed
by d′, is expected to be qualitatively different for the two classes
of stimuli.

2. Experiment 1

Recognition accuracy for morphed Caucasian faces and cars was
measured as the perceptual distance between the probe and the
study items, the memory load, and the ISI were manipulated. The
experiment was preceded by a pretest of the materials used in the
old–new recognition task.

1 The perceptual expertise at recognizing objects at a more specific categorical level
than the “basic level” of categorization (Rosch, Mervis, Gray, Johnson, & Boyes-Braem,
1976) has been referred to as “individuation training” by McGugin et al. (2011).

Fig. 1. An example trial from Experiments 1 and 2. After a fixationmark, amemory array
of 1, 2, 3, or 4 items (faces, cat faces, or cars), a blank screen (ISI=250, 750 ms, or
2500 ms), a memory probe, and another blank screen were presented sequentially.
The participants reported whether the memory probe was the same as one of the
items in the memory array.

Table 1
Morph steps in the continuum between the memory probe and each item of the
memory array in Experiments 1 and 2.

Memory load Old trials New trials

1 0 20
2 0 20 20 40
3 0 20 40 20 40 60
4 0 20 40 60 20 40 60 80
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2.1. Pretests of materials for Experiment 1

Psychometric functions in discrimination of test stimuli with
different levels of morphing between two faces or two cars were
generated. To enhance holistic processing, exposure duration at test
was limited (1000 ms). Unlimited exposure duration at test, in fact,
can encourage a local analysis which disrupts holistic processing
(Pallett & MacLeod, 2011; see also Hegde, 2008; Richler, Mack,
Gauthier, & Palmeri, 2009).

2.1.1. Method

2.1.1.1. Participants. Four undergraduate students of the University of
Florence with normal or corrected to normal vision participated in
the pretest. 5070 trials were collected from each participant.

2.1.1.2. Materials and procedure. Face stimuli were derived from
full-front digital renderings (300×400 pixels) of three Caucasian
men and three Caucasian women (e.g., Webster, Kaping, Mizokami,
& Duhamel, 2004). The study faces were generated by using a three-
dimensional face modeling software (FaceGen Modeller, Version 3.1,
Singular Inversions, Vancouver, BC, Canada). This software generates
facial structures of male and female faces semi-randomly, with a
high level of realism. Faces had no visible gender-specific features
(e.g., facial hair or make up). Morphs were generated by entering
male–female pairs into a morphing algorithm (Morph Man 4). Artifi-
cial continua were generated by morphing between pairs of faces
differing in gender. Faces were morphed between genders in order to
maximally differentiate the two extremes of each morph continuum.
The stimuli were generated by using the same procedure as described
by Afraz, Vaziri-Pashkam, and Cavanagh (2010). For each pairing,
the morphing procedure resulted in 100 images. Car stimuli were
generated in a similar way. Car pictures were recovered from catalogs
of auto manufacturers of different years, in order to create morph
continua between images of cars having similar shapes. Three morph
continua were generated between pairs of faces and three continua
were generated between pairs of cars (see Fig. 2). Stimuli were
presented and responses collected using a custom script written with
the PsychToolbox extension (Brainard, 1997; Pelli, 1997) of MATLAB
(Mathworks, Massachusetts) on a 486-based PC-compatible computer
connected to a 17-in. video monitor operating at 72 Hz.

Each trial started with the appearance of a small fixation point in
the middle of the screen. After 500 ms, a pair of faces or cars was
shown side-by-side for 1000 ms. In half of the trials, two identical
faces or cars were shown; in the other half, the two faces or cars
were slightly different. The method of constant stimuli was used to
measure two psychometric functions for each morph continuum. In
one psychometric function, the standard stimulus was 5% morphed
toward one extreme of the continuum; in the other, the standard
was 95% morphed toward the opposite extreme. The images used
as comparative stimuli were separated by 5, 10, 15, 20, 25, 30, or 35
morphing steps from the standard toward the opposite extreme of
the continuum. Subjects were not given feedback for their correct
and incorrect key presses.

2.1.1.3. Results. Psychometric functions were fit with a nonparametric
approach based on local linear fitting (Zchaluk & Foster, 2009). The
PSE and the slope were computed for each of the twelve psychometric
functions for each participant. There was not a statistically significant
difference between the average PSEs of the two types of stimuli, t46=
0.55, n.s., nor between the average slopes of the psychometric func-
tions, t46=0.30, n.s. (see Table 3). The average PSEs were equal to
17.7 morph steps (S.D.=6.4) and 16.2 morph steps (S.D.=7.8) for
the face and car morph continua, respectively. The average slopes of
the psychometric functions were equal to 0.06 (S.D.=0.04) and 0.06
(S.D.=0.03) for the face and car morph continua, respectively.

Table 2
Experiments 1 and 2. For each memory load, the first column indicates the positions
on the morph continuum from which the items of the memory array were selected;
the second column indicates the positions on the morph continuum from which the
probe was selected in “new” trials; the third column indicates the positions on the
morph continuum from which the probe was selected in “old” trials.

Memory array “New”

probe
“Old”
probe

Memory array “New”

probe
“Old”
probe

Memory load 1 Memory load 2
5 25 5 5, 25 45 25
15 35 15 15, 35 55 35
65 85 65 45, 65 85 65
75 95 75 55, 75 95 75
30 10 30 30, 50 10 30
40 20 40 40, 60 20 40
90 70 90 70, 90 50 70
100 80 100 80, 100 60 80

Memory Load 3 Memory Load 4
5, 25, 45 65 45 5, 25, 45, 65 85 65
15, 35, 55 75 55 10, 30, 50, 70 90 70
25, 45, 65 85 65 15, 35, 55, 75 95 75
35, 55, 75 95 75 20, 40, 60, 80 100 80
30, 50, 70 10 30 25, 45, 65, 85 5 25
40, 60, 80 20 40 30, 50, 70, 90 10 30
50, 70, 90 30 50 35, 55, 75, 95 15 35
60, 80, 100 40 60 40, 60, 80, 100 20 40

Fig. 2. The spectrum of face and car morphs in the pretest and in Experiment 1. Three
face and three car morph continua were generated. The five images in each row repre-
sent the positions 1, 25, 50, 75, and 100 along the morph continuum. In a given trial,
the items in the memory array and the probe were selected from one of these morph
continua according to the scheme indicated in Table 2.
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2.1.2. Discussion
The pretest indicates that, for exposure durations of 1000 ms

(the same as in Experiments 1–3), the face and car stimuli elicited
comparable levels of discrimination performance in a simultaneous
matching task. The results of the pretest provide the basis for using
the physical distance on the morph continuum as an estimate of the
perceptual distance across the two stimulus types. If the perceptual
distance between two items is directly related to their discriminabil-
ity (D'Lauro, Tanaka, & Curran, 2008), then the physical distance on
the morphing continuum can be used as an estimate of perceptual
distance. It is important to note, however, that the results of the pre-
test depend on stimulus duration. Two further pretest experiments
provided evidence that varying exposure duration can lead to qualita-
tively different results (see Section 4).

2.2. Experiment

Recognition accuracy for morphed Caucasian faces and cars was
measured for retention intervals of 250 ms, 750 ms, and 2500 sm.

2.2.1. Method

2.2.1.1. Participants. 28 undergraduate students from the University
of Firenze, Italy, participated in the experiment. They all had normal
or corrected-to-normal vision. All participants were naïve to the pur-
pose of the study and had not participated in the pretest experiments.

2.2.1.2. Materials and procedure. From each of the six morph continua
used in the pretest, one, two, three, or four positions were selected for
generating the memory array [memory load 1 (1 item in the memory
array), …, memory load 4 (4 items in the memory array)] and one
position was selected for the memory probe. A scheme of stimuli
generation is shown in Table 2.

Each of the 192 combinations of the morphed images used for the
memory array and for the probe (three continua×the 64 combinations)
was presented six times. In each trial, both the probe and the items
of thememory arraywere randomly positionedwithin a 10°×8° region.
Each participant completed the 1152 trials over the course of four
blocks in two 60-minute sessions. Trial order was randomized for
each participant. Experimental trials were preceded by a short practice
session allowing the participants to familiarize with the task and the
stimuli. Stimulus type (faces versus cars) was manipulated between
subjects.

After a fixation mark appeared for 500 ms in the center of the
screen, between one and four faces or cars were shown for encoding
for 2500 ms, followed by a 250, 750, or 2500 ms blank retention/
maintenance phase, a 1000 ms retrieval phase with a single probe
image at a random location, and a black screen until participants
stated whether the probe replicated or not one of the study items
(see Fig. 1). The response was followed by a 2000 ms inter-trial inter-
val (blank screen). Half of all trials were “new” trials (the probe
did not replicate any of the studies items). All stimuli were presented
at a viewing distance of 70 cm, which was kept constant by using a
chin rest.

2.2.1.3. Data analysis. A measure of the ability of participants to deter-
mine whether the probe replicated or not one of the items in the
encoding display is provided by the sensitivity index d′ used in signal
detection theory. The statistic d′ can be computed as d′=probit(hit
rate)−probit(false alarm rate). Equivalently, d′ can be estimated by
a probit regression (DeCarlo, 1998), with the advantage that, when
the analysis is framed as a regression model, other predictor variables
can be considered (Wright, Horry, & Skagerberg, 2009). By following
this second approach, a mixed-effect linear model with binomial
error structure and a probit link function was used to analyze the
participants' binary responses, with participants and items as crossed
random effects, and Faceold (whether the probe was old or new),
Setsize (1, 2, 3, or 4), and ISI as fixed effects. These analyses were
performed using the lme4 package (Bates & Sarkar, 2007) for the R
statistical environment (version 2.15.1, RDevelopment Core Team,
2012). The participants' accuracy was allowed to vary by adding to
the random part of the model both a term for the variance of accuracy
and the covariance between accuracy and responding “old”.2

2.2.2. Results

2.2.2.1. Recognition accuracy. Fig. 3 (left) shows recognition accuracy
(d′) for face stimuli as a function of memory load and ISI. Overall d′
was equal to 0.84, z=8.67, p=.001. The memory load× ISI interac-
tion was not statistically significant, χ6

2=3.43, p=.754. The effect
of memory load was statistically significant, χ12

2 =87.75, p=.001.
Accuracy was significantly lower for memory load 1 than for memory
loads 2 and 3 (Δd′1–2=−0.42, z=−3.44, p=.001; Δd′1–3=−0.26,
z=−2.17, p=.030). The effect of ISI was statistically significant,
χ10
2 =104.35, p=.001. For retention intervals of 750 ms and 2500 ms,

accuracy was significantly lower than for a retention interval of
250 ms (Δd′250–750=−0.22, z=−3.85, p=.001; Δd′250–2500=−0.30,
z=−5.43, p=.001).

Fig. 3 (right) shows recognition accuracy (d′) for car stimuli as a
function of memory load and ISI. For cars, the memory load× ISI inter-
action was not statistically significant, χ6

2=7.37, p=.288. The effect
of memory load was significant, χ12

2 =65.00, p=.001. Accuracy was
not significantly different for memory loads 2 and 3 than for memory
load 1 (Δd′1–2=−0.16, z=-1.06, p=.289; Δd′1–3=−0.27, z=-1.79,
p=.074). Accuracy was significantly lower for memory load 4 than
for memory load 1 (Δd′1–4=−0.32, z=-2.10, p=.036). The effect
of ISI was statistically significant, χ10

2 =56.18, p=.001. For retention
intervals of 750 ms and 2500 ms, accuracy was significantly lower
than for a retention intervals of 250 ms (Δd′250–750=−0.18, z=
-3.37, p=.001; Δd′250–2500=−0.28, z=-5.48, p=.001). Overall,
d′ was 0.38 higher for cars than for faces, z=4.63, p=.01.

For memory load 1, d′ was 0.78 lower for faces than cars, z=4.91,
p=.001. There were no differences in recognition accuracy between
stimulus categories for memory load 2, (Δd′=0.14, z=0.96, p=.34)
and for memory load 3 (Δd′=0.21, z=1.57, p=.12). For memory
load 4, d′ was 0.43 lower for faces than cars, z=3.82, p=.001.

2.2.2.2. Hit rates and false-alarm rates. Hit rates and false alarm rates
are shown in Fig. 4. For memory load 1 (small intra-class differences),
the false alarm rates were expected to be higher for faces than cars. This
hypothesis was tested by means of a by-subject random-intercepts

2 An advantage of the mixed-effect analyses over the traditional approach (where an
ANOVA is performed on the d′ scores computed for each participant in each cell of the
factorial design), is the possibility to specify crossed (or partially crossed) random ef-
fects for participants and items (see also Caudek & Domini, 2013; Wright & London,
2009). In this respect, mixed models can replace the by-subjects (F1) and by-items
(F2) ANOVAs (Judd, Westfall, & Kenny, 2012). The significance of the fixed-effects
was assessed by computing the deviance statistics (minus 2 times the log-likelihood)
of nested models; change in deviance is distributed as chi-square, with degrees of free-
dom equal to the number of parameters deleted from themodel (e.g., Baayen, Davidson,
& Bates, 2008).

Table 3
Average Points of Subjective Equality (PSE) and slopes of the psychometric functions
for the perceptual discrimination task in the pretest. Standard errors are indicated in
parenthesis.

Stimuli PSE Slope

Faces Continuum 1 14.66 (3.31) 0.084 (0.03)
Continuum 2 21.78 (3.23) 0.042 (0.01)
Continuum 3 16.56 (2.08) 0.058 (0.01)

Cars Continuum 1 20.63 (4.93) 0.046 (0.01)
Continuum 2 12.36 (3.43) 0.051 (0.02)
Continuum 3 15.49 (2.03) 0.073 (0.02)
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random-slopes mixed-effect model with logit(false alarm rate) as
the DV and memory load, ISI, and stimulus type (faces, cars) as the
fixed-effects, with participants and items as random effects. The
3-way interaction was statistically significant, χ28

2 =229.35, p=.001.
For memory load 1, logit(false alarm rate) was higher for faces than
cars at all ISIs (250 ms: t312=3.56, p=.001; 750 ms: t312=3.10, p=
.002; and 2500 ms: t312=2.42, p=.015). For memory loads larger
than 1, the effects of stimulus type and ISI were not significant,
nor was significant the stimulus type× ISI interaction (χ15

2 =21.66,
p=.117); logit(false alarm rate) significantly decreased as a function
of memory load (χ2

2=8.46, p=.014).
A similar analysis used logit(hit rate) as the DV. The effect of

stimulus type was not statistically significant, nor were any interac-
tions between stimulus type and the other variables, χ25

2 =36.59,
p=.063. The effects of ISI (χ2

2=28.34, p=.001) and memory load
(χ3

2=44.795, p=.001) were statistically significant (see Fig. 4).

2.2.2.3. Summed-similarity model of short-term item recognition. The
idea that WM fidelity is modulated by “acquired distinctiveness”

and “acquired equivalence” to maximize identity recognition is con-
sistent with the “summed-similarity models” of recognition, categori-
zation, and identification (e.g., Huang & Sekuler, 2010; Kahana &
Sekuler, 2002; Nosofsky, 1988; Sekuler & Kahana, 2007). According
to these models, in an old–new recognition task the probe acts as a
cue that activates matching memory representations. The probability
of a “yes/match” response increases with the summed similarity be-
tween the probe and the memory samples (Kahana & Sekuler, 2002;
Zhou, Kahana, & Sekuler, 2004). Importantly, these models propose
that different stimulus dimensions are represented according to their
diagnosticity for category membership: A greater “weight” is given to
psychological dimensions that are relevant for the categorization and
a smaller “weight” is given to irrelevant dimensions.

The summed-similarity model was implemented as described in
Eq. (A.5) of the Appendix A. Tables 4 and 5 report the estimated β co-
efficients for the distances S1 (20 morph steps), S2 (40 morph steps),
S3 (60 morph steps), and S4 (80 morph steps) between the memory
probe and each item of the memory array (see Table 1). The coeffi-
cients βS1 and βS2 describe the contributions of small and large
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Fig. 3. Experiment 1. Recognition sensitivity (d′) a function of memory load and ISI: (a) faces, (b) cars.
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intra-class differences to the probability of a “yes/match” response,
respectively; the coefficients βS3 and βS4 describe the contributions
of small and large cross-class differences to the probability of a
“yes/match” response, respectively. The size of these coefficients in-
dicates the relative contribution of each dissimilarity level to the
probability of a “yes/match” response.

Note that, although the estimated coefficientβS1 for the car stimuli is
statistically significant at all ISIs (Table 5), the coefficientβS1 for the face
stimuli is not (Table 4). It is also worth noting that the coefficient βS4

(which is associated to the largest dissimilarity S4=80 morph steps)
is not statistically significant at all ISIs, neither for the face nor for
the car stimuli. This result is consistent with the summed-similarity

model, which assumes that the probedoes not activate highly dissimilar
stored exemplars (Nosofsky, Little, Donkin, & Fific, 2011).

2.2.3. Discussion
The hypotheses described in Section 3 predict (1) higher false alarm

rates for faces than cars in the case of memory load 1 (i.e., when the
“new” memory probe and the study item differ only in terms of subtle
image characteristics), and (2) no difference in false alarm rates and
in hit rates between the two classes of stimuli for memory loads 2–4
(when the differences between the “new” memory probe and the
study items aremodulated as described in Table 2). The results reported
in Section 2 are consistent with these predictions.

For faces, the hit rates and false alarm rates resulted in a lower
recognition accuracy, as assessed by d′, for memory load 1 than for
memory loads 2 and 3 (Fig. 3 left). For cars, conversely, the results
replicate the usual finding indicating that performance tends to
decrease as memory load increases (e.g., Jackson & Raymond, 2008;
Luck & Vogel, 1997; Vogel & Machizawa, 2004) — see Fig. 3 right.

The increase of false alarm rates with increased typicality has
already been reported in old–new recognition experiments (e.g., Zaki
& Nosofsky, 2001). The present results suggest that the false alarm
rates in WM recognition depend, not only on perceptual discrimina-
bility, but also on whether the study items are (or are not) objects
of expertise (i.e., faces or cars).

Consistent with the hypotheses, the coefficient βS1 of the summed-
similarity model was statistically significant for the car stimuli, but
not for the face stimuli. This indicates that the smallest intra-class
differences provided a statistically significant contribution to the
probability of participants saying the probe was seen before for the
car stimuli, but not for the face stimuli.

2.2.4. Caveats
It is important to point out that the results described in the previ-

ous section depend critically on how similar the items are and how
perceptual similarity is measured. (1) In the present study, memory
fidelity was lower for faces than for cars, but only when the image
differences between the probe and the study items were just over
the threshold of perceptual discrimination (see also Section 4).
(2) Perceptual similarity was indexed by perceptual discrimination
performance. The stimuli were selected so that, for a stimulus presen-
tation time of 1000 ms (i.e., the same presentation time used for the
memory probe in the delayed matching task), performance in the
simultaneous matching task was similar across face and car stimuli.
However, as indicated in the two experiments briefly described below,
perceptual similarity depends on encoding duration.

In one experiment (13 participants), the same stimuli of the Pretest
were used to measure perceptual similarity with the procedure de-
scribed in Corneille, Hugenberg, and Potter (2007). Presentation dura-
tion was 250 ms, after which the screen was blanked. The two images
used on each trial were either identical or differed by 20 steps along
themorph continuum. Fifteen unique different-face pairs were selected
from each of the six morph continua. For each morph continuum, 15
same-face pairs and 15 different-face pairs were presented 22 times, to-
taling 660 trials per participant. Overall d′ was equal to 1.24 for faces
and to 0.81 for cars (z=7.17, pb .001). Therefore, the morphed cars
were closer to each other in perceptual space than the morphed faces,
when processed within a temporal window of 250 ms.

In another experiment, the procedurewas the same as above, except
that participants were instructed to locally compare the two images
shown side-by-side, with an unlimited presentation time. Under these
conditions, discrimination accuracy was higher for cars than for faces.
This is not surprising because the face images at the two endpoints of
each morph continuum always comprised the same local features. But
this was not true for the car images. As a consequence, when the
image pairs were the same distance apart on the morph continuum,

Table 4
Estimated parameters of Eq. (A.5) for the face stimuli in Experiment 1. Significance
levels were computed by logistic mixed effects models with the participants' binary re-
sponses as the dependent variable with binomial error structure, participants and
items as random effects, and M, S1, S2, S3, and S4 as fixed effects.

Coef β SE(β) z p

ISI=250 ms
Intercept 0.22 0.20 1.1 >0.3
M 1.49 0.09 17.1 b .0001
S1 0.10 0.19 0.5 >0.6
S2 −0.60 0.16 −3.7 b .001
S3 −0.65 0.19 −3.5 b .001
S4 0.19 0.27 0.7 >0.5

ISI=750 ms
Intercept 0.25 0.19 1.3 >0.2
M 1.13 0.08 13.8 b .0001
S1 0.11 0.17 0.6 >0.5
S2 −0.81 0.15 −5.3 b .0001
S3 −0.59 0.18 −3.3 b .001
S4 0.43 0.26 1.6 >0.1

ISI=2500 ms
Intercept 0.33 0.19 1.8 >0.1
M 0.97 0.08 11.9 b .0001
S1 −0.12 0.17 −0.7 >0.5
S2 −0.95 0.15 −6.2 b .0001
S3 −0.38 0.18 −2.1 b .05
S4 0.41 0.27 1.6 >0.1

Table 5
Estimated parameters of Eq. (A.5) for the car stimuli in Experiment 1. Significance
levels were computed by logistic mixed effects models with the participants' binary re-
sponses as the dependent variable with binomial error structure, participants and
items as random effects, and M, S1, S2, S3, and S4 as fixed effects.

Coef β SE(β) z p

ISI=250 ms
Intercept 0.14 0.20 0.7 >0.5
M 1.90 0.10 18.8 b .0001
S1 −0.70 0.19 −3.6 b .001
S2 −0.38 0.17 −2.3 b .05
S3 −1.02 0.25 −4.1 b .0001
S4 0.51 0.32 1.6 >0.1

ISI=750 ms
Intercept 0.46 0.19 2.4 b .05
M 1.53 0.10 16.0 b .0001
S1 −0.88 0.18 −4.8 b .0001
S2 −0.56 0.16 −3.6 b .001
S3 −0.46 0.23 −2.0 b .05
S4 0.21 0.31 0.7 >0.5

ISI=2500 ms
Intercept 0.24 0.20 1.2 >0.2
M 1.33 0.09 14.1 b .0001
S1 −0.62 0.17 −3.7 b .001
S2 −0.56 0.15 −3.7 b .001
S3 −0.57 0.23 −2.5 b .05
S4 −0.06 0.31 −0.2 >0.8
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the local comparisonof two carmorphs allowed for an easier discrimina-
tion than the local comparison of two face morphs.

In summary, an equal number of steps on the morph continuum
did not produce equivalent levels of perceptual discrimination perfor-
mance across faces and car stimuli, if encoding duration was either
very short or very long. It is thus possible that the results of
Experiment 1 depend on the presentation duration of 1000 ms for
the memory probe, which was adopted to maximize participants'
reliance on holistic cues and to prevent a local encoding of individual
face and car parts (Macchi Cassia, Picozzi, Kuefner, Bricolo, & Turati,
2008; Richler et al., 2009).

3. Experiment 2

The purpose of Experiment 2was to determinewhether the results
of Experiment 1 could be replicated with other race/species faces.

3.1. Method

3.1.1. Participants
24 undergraduate students from the University of Florence par-

ticipated in the experiment. All of them were Caucasian and had nor-
mal or corrected-to-normal vision. All participants were naïve to the
purpose of the study and had not participated in Experiment 1. None
of them had lived abroad (in an ethnically different environment)
for a significant amount of time.3

3.1.2. Materials and procedure
The stimuli were generated by using 12 images (300×400 pixels)

of human faces (six Caucasian facial images and six afro-American
facial images) and 12 images of cat faces as indicated in Section 2.
For human faces, artificial continua were generated by morphing
between pairs of faces differing in gender but not race. The Caucasian
faces were the same as in Experiment 1. For cats, different cat faces
were morphed, as indicated in Fig. 5. Images of cats with a lighter
or a darker fur were used. Because this variable had no effect on
recognition performance, it was not further analyzed. Cat faces were
expected to produce intermediate results between human faces and
cars. Discrimination measures for cat faces were not collected because
the present study focused on the two extreme categories. Task and
procedure were the same as in Experiment 1, except that ISI was
kept fixed at 750 ms.

3.2. Results

3.2.1. Recognition accuracy
Fig. 6 (left) shows recognition accuracy (d′) as a function ofmemory

load and stimulus type (Caucasian faces, afro-American faces, and cat
faces). The d′ values were 1.10 (z=14.09), 1.21 (z=15.59), and 1.025
(z=15.14), for Caucasian, afro-American, and cat faces, respectively.
In a by-subject random-intercepts random-slopes mixed-effect model,
the memory load×stimulus type interaction was statistically signifi-
cant, χ6

2=13.38, p=.037.
For Caucasian faces, the effect of memory load was statistically

significant, χ3
2=18.77, p=.001. Accuracy was significantly lower for

memory load 1 than for memory load 2 (Δd′1–2=−0.59, z=3.71,
p=.001). Accuracy for memory load 1 did not differ from accuracy for
memory loads 3 and 4 (Δd′1–3=0.06, z=0.41, and Δd′1–4=−0.13,
z=−0.62).

For afro-American faces, the effect of memory load was statisti-
cally significant, χ3

2=16.53, p=.001. Accuracy was significantly
lower for memory load 1 than for memory load 2 (Δd′1–2=−0.37,

z=2.34, p=.020). Accuracy for memory load 1 did not differ from
accuracy for memory load 3 (Δd′1–3=0.01, z=0.052). Accuracy was
significantly lower for memory load 4 than for memory load 1
(Δd′1–4=0.481, z=2.33, p=.020). Accuracy for afro-American faces
did not differ from accuracy for Caucasian faces, χ8

2=14.84, p=.062.
For cat faces, the effect of thememory load on recognition accuracy

was not statistically significant, χ3
2=2.67, p=.446. Accuracy was sig-

nificantly lower for cat faces than for human faces (Δd′=−0.143,
z=−2.453, p=.014).

3.2.2. Hit rates and false-alarm rates
Hit rates and false alarm rates are shown in Fig. 6 (right). In a

by-subject random-intercepts random-slopes mixed-effect model
having logit(false alarm rate) as the DV and memory load and stimu-
lus type (Caucasian faces, afro-American faces, cat faces) as the as
fixed-effect predictors, with participants and items as random effects,
the interaction memory load×stimulus type was not statistically
significant,χ6

2=10.48, p=.106. The effect of memory load was statis-
tically significant, χ3

2=41.53, p=.001; the logit(false alarm rate) was
significantly higher for the memory load 1 than for memory load 2, 3,
or 4 (1 vs. 2: t260=7.53; 1 vs. 3: t260=9.94; 1 vs. 4: t260=5.05). The
logit(false alarm rate) did not differ across Caucasian and cat faces,
t261=0.41, but was higher for Caucasian than for afro-American
faces, t261=3.66, p=.001.

When logit(hit rate) was the DV, the memory load×stimulus type
interaction was not statistically significant, χ6

2=9.98, p=.125. The
3 No information was collected about whether participants had extensive experi-

ence with cats.

Fig. 5. The spectrum of afro-American face and cat face morphs in Experiment 2. In the
25% of the trials of Experiment 2, the items of the memory array and the probe were
selected from the three morph continua represented in the top panel of Fig. 2; in the
25% of the trials the stimuli were selected from the three morph continua of the
afro-American faces (top panel); in the remaining 50% of the trials, the stimuli were
selected from six morph continua of cat faces (bottom panel) — only three cat morph
continua are shown here.
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effect of stimulus type was not statistically significant, χ2
2=4.46, p=

.108. The effect of memory load was statistically significant, χ3
2=

36.38, p=.001. The logit(hit rate) was higher for memory load 1
than for memory load of 2, 3, or 4 (1 vs. 2: t260=2.41; 1 vs. 3:
t260=7.08; 1 vs. 4: t260=6.19).

3.2.3. Summed-similarity model of short-term item recognition
Table 6 shows the estimated β coefficients for the distances S1, S2,

S3, and S4 between the memory probe and each item of the memory
array. For Caucasian and afro-American faces, the estimated coeffi-
cients βS1 and βS4 are not statistically significant. These results repli-
cate those of Experiment 1. For cat faces, instead, βS1 and βS4 are both
statistically significant.

3.3. Discussion

Accuracy was significantly lower for memory load 1 (i.e., for the
smallest within-category distances between the memory probe and
the study item) than for memory load 2, for both Caucasian and
afro-American faces. As in Experiment 1, this result is primarily due
to high false alarm rates when the memory array comprised one
human face. For cat faces, accuracy was not affected by memory load.

The results of Experiment 2 are consistent with the hypothesis
that visual expertise with human faces affects WM recognition
through tuning of stored representations with “acquired equivalence”
(i.e., low fidelity representation of irrelevant dimensions). For Caucasian
participants, “acquired equivalence” affected WM recognition also
for images of afro-American faces. The results obtained with cat faces,
instead, differed from those obtained with human faces and with cars
(Experiment 1). The importance of this difference, however, must be
interpreted with caution, due to the possibility that it might depend
on low-level differences between the two classes of images rather
than on the cross-specie manipulation. It is possible to speculate that
cat faces, because of their resemblance to human faces, combine WM
processing of expert-domain objects and objects of non-expertise.

4. Experiments 3a and 3b

The two experiments briefly described here demonstrate that the
results of Experiments 1 and 2 depend critically on item confusability.

4.1. Experiment 3a

Experiment 3a replicated the design of Experiment 2, except that
the items were front-view photographs of easily discriminable faces
of each sex (e.g., Morgan, Klein, Boehm, Shapiro, & Linden, 2008).
The experiment consisted in 320 “old” trials and 320 “new” trials.
Ten naive observers participated in the experiment. For memory
loads 1, 2, 3, and 4, d′ was equal to 4.17 (S.E.=0.15), 2.35 (S.E.=
0.09), 1.39 (S.E.=0.07), and 1.07 (S.E.=0.07), respectively. Accuracy
was significantly higher for memory load 1 than for memory load 2
(z=-10.75, pb .001), for memory load 2 than for memory load 3
(z=-8.35, pb .001), and for memory load 3 than for memory load 4
(z=−3.19, pb .002).
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Fig. 6. Experiment 2. Left panel: Recognition sensitivity (d′) as a function of memory load for Caucasian, afro-American, and cat faces. Right panel: Hit rates and false alarm rates as a
function of memory load for Caucasian, afro-American, and cat faces. The +, ×, and * symbols denote the predicted probabilities computed according to Eq. (A.5) with the
parameters shown in Table 6 for Caucasian, afro-American, and cat faces, respectively.

Table 6
Estimated parameters of Eq. (A.5) for the stimuli of Experiment 2. Significance levels
were computed by logistic mixed effects models with the participants' binary re-
sponses as the dependent variable with binomial error structure, participants and
items as random effects, and M, S1, S2, S3, and S4 as fixed effects.

Coef β SE(β) z p

Caucasian faces
Intercept 0.47 0.19 2.4 b .05
M 1.41 0.09 16.3 b .0001
S1 −0.18 0.17 −1.1 >0.3
S2 −1.52 0.15 −10.2 b .0001
S3 −0.47 0.19 −2.4 b .05
S4 0.51 0.38 1.3 >0.2

Afro-American faces
Intercept 0.24 0.18 1.3 >0.2
M 1.56 0.08 18.9 b .0001
S1 −0.22 0.16 −1.4 >0.2
S2 −0.94 0.14 −6.8 b .0001
S3 −0.96 0.19 −5.1 b .0001
S4 0.15 0.38 0.4 >0.7

Cat faces
Intercept 1.32 0.18 7.3 b .0001
M 1.13 0.07 16.3 b .0001
S1 −0.73 0.17 −4.3 b .0001
S2 −1.01 0.12 −8.2 b .0001
S3 −0.97 0.15 −6.5 b .0001
S4 −0.71 0.26 −2.7 b .01
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4.2. Experiment 3b

Experiment 3b replicated the design of Experiment 3a, except that
(1) the memory array comprised only one or two faces, and (2) the
stimuli were generated by morphing between images of real human
faces. Only the inner portion of a face was made visible through
an oval aperture. In “new” trials, the physical distances between
the probe and the study items were comparable to the large within
category differences used in Experiments 1 and 2. The experiment
consisted in 354 “old” trials and 354 “new” trials. Seven naive ob-
servers participated in the experiment. For memory loads 1 and 2,
d′ was equal to 1.30 (S.E.=0.05) and 1.04 (S.E.=0.05), respectively.
Accuracy was significantly higher for memory load 1 than for memory
load 2 (z=5.85, pb .001).

4.3. Discussion

Experiments 3a and 3b indicate that “acquired equivalence”
affects the memorial discriminability of faces only when the memory
probe and the study item are separated by within-category distances
that are just over the threshold of perceptual discrimination. The
results of Experiment 3b confirm that there is no effect of “acquired
equivalence” on recognition performance for “large” within-category
differences between the memory probe and the study items.

5. General discussion

Recognition at the individual-exemplar level tends to occur by de-
fault for expert-domain objects, but not for objects of non-expertise
(e.g., Anaki & Bentin, 2009). Previous studies suggest that “acquired
equivalence” and “acquired distinctiveness” enhance recognition
at the individual-exemplar level (Goldstone, 1994; Nosofsky, Little,
& James, 2012). The present study shows that “acquired equivalence”
has the effect of decreasing memorial discriminability, more for
objects of expertise (faces) than for objects of non-expertise (cars),
even if the changes between study items and the probe had been
matched for perceptual discriminability. When the task requires
the recognition of subtle changes in appearance, which preserve the
identity of the study items, the effect of “acquired equivalence” may
be so dramatic as to alter the usual association between increased
memory load and decreased recognition of faces (Experiments 1
and 2). This counterintuitive result in our data is primarily due to
high false alarm rates that were observed when only one face was
retained in memory and the differences between the memory probe
and the study item were just over the threshold of perceptual
discrimination.

5.1. Alternative interpretations

5.1.1. Encoding differences
An alternative explanation is that, during the learning phase,

participants stored in WM a larger number of details for cars than
faces. It is also possible that observers are sensitive to subtle image
changes, but they are unable to access such information when the
task requires to focus their attention to the identity of the items stored
in memory. Furthermore, while subtle differences may be used to dis-
criminate cars, other features may be responsible for facial identity
discrimination.

5.1.2. Ensemble statistics
It has been suggested that WM stores not only information about

individual items, but also information about the “featural context” or
the “ensemble statistics” (Alvarez, 2011). This “relational” encoding
could contribute to highlight the features that are more relevant
for performing the old–new task (e.g., Haberman & Whitney, 2012;
Jiang, Kwon, Shim, & Won, 2010; Magnussen, 2000). In the WM

task, therefore, participants might have been at a disadvantage when
the memory array comprised a single item. An explanation in terms
of “relational” encoding, however, leaves open the question of why
face and car stimuli produced different results.

5.1.3. Crowding
The inability to recognize objects in clutter, or crowding, is usually

described between objects, but it can also occur within an object.
For example, Martelli, Majaj, and Pelli (2005) presented a face in an
eccentric position for 200 ms and found that it is unrecognizable,
unless it is huge. They argued that this occurs because also faces are
recognized by parts: When the image is small, the parts of the face
cannot be isolated in a single glance and this impairs recognition. In
another study, Louie, Bressler, and Whitney (2007) presented their
stimuli in an eccentric position for 400 ms and found that recognition
of an upright face was significantly worse when the target face was
surrounded by upright flanker faces than when it was surrounded
by inverted flankers, or none at all. Even though selective crowding
can take place between high-level representations of faces, there are
several reasons why the present findings cannot be explained by this
attention mechanism. (1) The present results concern performance
in a memory task, whereas crowding is a perceptual phenomenon.
(2) In the present study, recognition performance was significantly
better when the memory array comprised two faces rather than
a single one. Crowding would predict the opposite result. (3) The
memory array was presented for 2500 ms and comprised no more
than four items. This presentation time is sufficient to foveate each
item over multiple fixations. Therefore, crowding did not impair the
encoding of the memory array. (4) 1000 ms provide enough time to
foveate and also to scan the different parts of the test probe. Therefore,
crowding did not impair the processing of the probe item.

5.2. Global versus local processing

A limited presentation time of 1000 ms for the memory probe
biases participants toward a global processing strategy, which favors
face recognition and holistic processing over feature-based processing
(e.g., Calder & Young, 2005).4 The present study suggests that, also
under these conditions, “acquired equivalence” can put faces at a dis-
advantage with respect to a memory task for subtle image changes
compared to other categories of stimuli.

5.3. The face-space model

Valentine (1991) proposed that faces are represented as points
in a multidimensional similarity space centered on a prototypical
average face. The dimensions spanning this face-space are assumed to
encode the critical information used to discriminate faces (e.g., Busey,
1998; Busey & Arici, 2009; Busey & Tunnicliff, 1999; Hancock, Burton,
& Bruce, 1996; Knapp, Nosofsky, & Busey, 2006). The tolerance to
identity-preserving transformations has been accommodated within
the face-space model by hypothesizing the existence of “identity
clusters” that locate close to one another all the face images of the
same person under varying viewing conditions (Blank & Yovel, 2011).
The present results can be understood within this framework by
postulating that it is more likely to retrieve from WM the mean of
each “identity cluster” than any individual exemplar. Objects could
also be represented in a similarity space, but the principles underlying
their organization in similarity space might be different than for faces.

4 Several lines of evidence suggest that a short presentation time favors face processing.
For example, the face-identity aftereffect is stronger when the test stimuli are presented
for shorter durations than for longer durations (Leopold, Rhodes, Müller, & Jeffery,
2005). A short presentation time has been also shown to be important for the emergence
of the caricature effect (Lee & Perrett, 2000).

48 C. Caudek / Acta Psychologica 143 (2013) 40–51



5.4. Separate face processing mechanisms

Multiple evidence suggest that separate modules in the brain pro-
cess the expression of emotion and the identity of faces in a relatively
independent fashion (Bruce & Young, 1986; Calder & Young, 2005;
D'Argembeau & Van der Linden, 2011; Soto & Wasserman, 2011;
but see also Martinez, 2003). It has also been proposed that facial
expression recognition might be more efficient than facial identity
memory or perception (Bankó, Gál, & Vidnyánszky, 2009). The ability
to detect very small changes in the facial expression of emotion has
been reported, among others, by Neth and Martinez (2009). What is
interesting for the present discussion is that, in their study, observers
were more likely to correctly report a difference between two
sequentially-presented images of faces if the first image was closer
to the mean face for a specific facial identity and the second was
distant from that mean face, rather than the opposite. This result is
consistent with the idea that the mean of an “identity cluster” is
more likely to be recovered from WM than any individual exemplar.
In fact, the closer the first image was to the mean facial identity, the
smaller were the memory distortions. Note also that Neth and
Martinez's results were found with images of faces displaying positive
and negative expressions — not with faces with a neutral expression,
as in the present study.

5.4.1. Evidence from upside-down faces
Results consistent with Neth and Martinez (2009) have also been

provided by Caudek and Lorenzino (2012). In a preliminary phase of
their experiments, pairs of upright or upside-down morphed faces
were selected to be equally perceptually discriminable in a simulta-
neous matching task. The faces pairs were drawn from morph con-
tinua between two expressions or two identities. The selected face
pairs were then used in a delayed matching task and the strength
of the Face Inversion Effect (FIE) was measured.5 For subtle varia-
tions in facial affect, recognition performance was better for upright
than for upside-down faces. Instead, for subtle variations of face
images displaying a neutral expression, the FIE reversed its direction:
Caudek and Lorenzino found better recognition performance for
upside-down than for upright faces. In accordwith the present results,
Caudek and Lorenzino's findings suggest that WM can represent with
high fidelity fine-grained information about facial expressions, but
not fine-grained information about faces with a neutral expression.

5.5. Conclusions

The present study utilized signal detectionmethodology to examine
the effects of perceptual discriminability and memory load on recogni-
tion accuracy. The results obtained with objects of non-expertise (cars)
confirm that increased memory load is associated with a decrement
in recognition accuracy. The novel result of the present study is that,
under specific stimulus conditions, the memory for multiple faces can
exceed that of a single face. This result may be due to the lowmemorial
discriminability of the transient properties of faces with a neutral
expression, which may serve the purpose of enhancing recognition
at the individual-exemplar level.
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Appendix A. Fitting the summed-similarity model

According to the summed-similarity model, each member of the
memory array is stored as a distinct exemplar in memory. When
thememory probe i is observed, all the exemplars are activated in pro-
portion to their similarity to the probe (e.g., Knapp et al., 2006). The
greater the summed similarity between i and the stored exemplars,
the greater is the probability with which the observer responds
“old.” Recognition choice probabilities are a positive function of the
global familiarity Fi:

P say old ij Þ ¼ f Fið Þ:ð ðA:1Þ

The familiarity of the probe i is given by the summed similarity of
i to each item j of the memory array:

Fi ¼ ∑
j
s i; jð Þ; ðA:2Þ

where s(i, j) is the similarity of the probe i to the jth stored exemplar.
The similarity s(i, j) is assumed to be an exponential decay function
of the perceptual distance between i and j (e.g., Busey & Arici, 2009),

s i; jð Þ ¼ exp −κ⋅d i; jð Þ½ %: ðA:3Þ

Finally, the similarity of the probe to itself (as a stored exemplar)
is defined as

s i; ið Þ ¼ γ ðA:4Þ

where γ>0 is a freely estimated parameter that measures the impor-
tance of common-featurematches and the distinctiveness of the probe
i (Knapp et al., 2006).

For the purposes of the present investigation, the summed-
similarity model was instantiated in the following form6 to predict
the logit of participants saying the probe was seen before (i.e., say old):

log
P
!
say old M; Sj

"""
#

1−P
!
say old M; Sj

"""
# ¼ α þ γM þ∑

j
βjSj; ðA:5Þ

with j=1,…,4, where M is an indicator variable whose role is to indi-
cate whether there is (M=1) or there is not (M=0) a perfect match
between the probe and a study item, and Sj is an estimate of the
similarity of the probe i to the jth stored exemplar. For the present
purposes, Sj was estimated as exp[–d(i, j)], with d(i, j) being the
distance on the morph continuum between the probe i and the jth
studied item (see Table 1). The parameter γ of Eq. (A.5) estimates
s(i, i) of Eq. (A.4), the parameters βj estimate the contribution of
s(i, j) of Eq. (A.3) to the probability of participants saying the probe
was seen before, and α is a parameter which modulates the overall
probability of an “yes/match” response.7

5 The FIE, which is one of the landmarks of holistic face processing, indicates that
turning an image upside down impairs discrimination to a larger extent for faces than
for non-face objects (Yin, 1969).

6 Different instantiations of the summed-similarity model have been proposed and
the relative fit of these different implementations has been discussed (e.g., Busey &
Arici, 2009). These issues, however, are beyond the scope of the present investigation.

7 Several methodological differences distinguish the present implementation of the
summed-similarity model from previous work. In most previous studies (1) the probe
remained visible until the subject's response was recorded, (2) feedback was often
provided, and (3) the perceptual differences between the probe and the study items
were well above the threshold of perceptual discrimination. In the present case, a short
presentation time was chosen to limit local processing and to favor face processing. No
feedback on correct judgments was provided in order to reduce learning effects, given
that the goal was to study the biases in WM. Finally, stimulus displays with subtle im-
age changes were used (rather than easily discriminable items), because the goal was
to investigate the fidelity of WM.
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