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Internal consistency of local depth, slant, and curvature judgments was studied by asking participants to
match two 3D surfaces rendered by different mixtures of 3D cues (velocity, texture, and shading). We
found that perceptual judgments were not consistent with each other, with cue-specific distortions. Add-

ing multiple cues did not eliminate the inconsistencies of the judgments. These results can be predicted
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by the Intrinsic Constraint (IC) model according to which the perceptual metric local estimates are a
monotonically increasing function of the Signal-to-Noise Ratio of the optimal combination of direct infor-
mation of 3D shape (Domini, Caudek, & Tassinari, 2006).
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1. Introduction

The fundamental problem of three-dimensional (3D) shape per-
ception is to identify the perceptual processes yielding (a) a con-
scious experience of solid shape, and (b) the visuomotor
mechanisms allowing a successful interaction with the environ-
ment. The first of these two aspects is the focus of this work.
Two main schools of thought have emerged in this respect. Accord-
ing to one, the goal of visual processing is to create “visual repre-
sentations” that are isomorphic with the environmental objects.
Euclidean geometry can be used to describe the geometric proper-
ties of both the environmental objects and the observer’s “internal
representations”. Such class of models will therefore be called
“Euclidean”.

“Euclidean” models treat 3D shape perception as the solution of
the inverse problem of generating 3D descriptions from images
(e.g., Horn, 1986; Kersten, Mamassian, & Yuille, 2004). Akin to Hel-
moltzian perceptual inference, 3D shape perception is understood
as the re-construction of the information that has been lost in the
transformation from the distal to proximal stimulus. The “shape-
from-X" problem (where X can be stereo, texture, shading, etc.)
is an ill-defined problem, because a veridical 3D metric re-con-
struction cannot be obtained from the retinal images alone, but it
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requires additional knowledge about the (“missing”) scene param-
eters and a-priori knowledge about the structure and motion of the
environmental objects (e.g., Biilthoff & Yuille, 1990). One example
is provided by the rigidity assumption for the solution of the Struc-
ture-from-Motion problem (Ullman, 1979).

Another school of thought postulates that only some geometri-
cal properties of the environmental objects are represented in an
isomorphic fashion in the brain. Specifically, it is hypothesized that
3D shape perception is based on the information that is directly
specified by the retinal images (not inferred through the estima-
tion of “missing” parameters). Lappin and Craft (2000) presented
such view by saying that “[s]patial vision requires reliable and
approximately one-to-one spatial correspondences between envi-
ronmental objects, retinal images, and their representations in
the visual nervous system and perception. The spatial information
for vision is defined by such mutual correspondences” (p. 6). In the
same spirit, other researchers have speculated that spatial vision
relies on “image primitives” that provide an invariant and reliable
one-to-one correspondence with specific properties of the environ-
mental objects. The relative binocular disparities, for example, di-
rectly specify the viewer-centered depth-order relationships, the
second-order derivatives of the retinal disparities differentiate pla-
nar and curved surfaces, and so on. In general, retinal signals like
disparity fields, velocity fields, texture gradients, and luminance
gradients directly specify local “affine” structure (Koenderink,
1990; Todd & Bressan, 1990). We will therefore term the computa-
tional models relying on such image primitives as “Local Affine”.
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Is 3D shape perception better described by “Euclidean” or “Lo-
cal Affine” theories? Neither seems to suffice. “Euclidean” models
are at odds with the biases of perceived 3D shape. In fact, observ-
ers’ judgments of Euclidean 3D properties are often inaccurate
(Bradshaw, Parton, & Glennerster, 2000; Caudek & Domini, 1998;
Caudek & Proffitt, 1993; Caudek & Rubin, 2001; Di Luca, Domini,
& Caudek, 2004; Domini & Caudek, 1999; Domini & Caudek,
2003a, 2003b; Domini, Caudek, & Richman, 1998; Fantoni, 2008;
Fantoni, Caudek, & Domini, 2010; Glennerster, Rogers, & Bradshaw,
1996; Hecht, van Doorn, & Koenderink, 1999; Tittle, Todd, Perotti,
& Norman, 1995; but see also Brenner & van Damme, 1999; Durgin,
Proffitt, Olson, & Reinke, 1995; Johnston & Passmore, 1994a,
1994b), with a large variance within and across observers (Todd,
2004; Todd & Norman, 2003). “Euclidean” models attribute percep-
tual distortions to incorrect estimations of the “missing” parame-
ters. For example, an incorrect estimate of the viewing distance
is hold responsable for the distortions in perceived shape-from-
stereo (e.g., Johnston, 1991). But this account can be regarded at
best as an ex post facto explanation: in fact, it is not possible to
quantify a priori the mis-estimation of a “missing” parameter. As
a consequence, no predictions can be made about perceptual biases
in perceived 3D shape.

On the other hand, the scope of “Local Affine” theories is lim-
ited. Such approach is consistent with the empirical findings show-
ing that local affine judgements are reliable and accurate at
hyperacuity levels (van Boxtel, Wexler, & Droulez, 2003; Cornil-
leau-Péres et al., 2002; Dijkstra, Cornilleau-Pérés, Gielen, & Dro-
ulez, 1995; Lappin & Craft, 2000), but it cannot be applied to
perception of metric 3D shape.

The present investigation intends to contribute to the develop-
ment of a general theory capable of explaining both the biases of
metric judgments and the precision of affine discriminations. In
this paper, we will first present our hypothesis and then we will
test the proposed approach in two experiments.

1.1. Direct information about 3D shape

1.1.1. Metric maps for depth, slant, and curvature

The stimuli used in the present investigation were (single- or
multiple-cue) renderings of an elliptic paraboloid of revolution
aligned with the line of sight (z). Within an orthogonal coordinate
system (x,¥,z), such a surface is usually described in terms of the
depth-map

2x.y) = 5 (€ + 7). 1)

The constant C determines the surface elongation along the z
dimension. In Fig. 1, the depth separation between the tip of the

paraboloid and another point of its surface is represented by the
length of the red segment.

The depth-map provides one of many equivalent descriptions of
this 3D structure. Being smooth and locally differentiable, the sur-
face can also be described in terms of a slant-map s(x,y), where

X N2 . .
(g—i)z + (3—;) . The slant at a surface location is the angle

s(x,y) =
between the fronto-parallel plane and the plane tangent to the sur-
face (the green square in Fig. 1). For an elliptic paraboloid of revo-
lution, s(x,y) = Cy/x2 + y2.

Another equivalent metric description is provided by the

2 2
curvature-map c(x,y), where c(X,y) = \/Knin + Kmaxr AN Kpin

and kp;, are the principal curvatures at the point (x,y). For
an elliptic paraboloid of revolution, the curvature is constant:
c(x,y)=C. In Fig. 1, the principal curvatures at the tip of the
paraboloid are represented by the two blue arcs. The principle
curvature values are the inverse of the radii of these two
arcs.

1.1.2. Local affine maps for depth, slant, and curvature

Fig. 1 represents four paraboloids characterized by different val-
ues of the constant C. For the Euclidean geometry, the depth-map,
slant-map, and curvature-map are equivalent: given one of these
descriptions, another can be found through derivation or integra-
tion. As seen in Fig. 1, the value of C uniquely determines the local
metric depth, slant, and curvature.

For the Affine geometry, conversely, the metric of the depth-,
slant-, and curvature-maps becomes meaningless: all four surfaces
shown in Fig. 1 are identical, because a local affine representation
preserves the depth-map, the slant-map, and the curvature-map
only up to an unknown scaling constant k. In the following, we will
refer to k,z(x,y), kss(x,y), and k.c(x,y) as to the local affine depth-,
slant-, and curvature-maps.

1.1.3. Estimation of local affine maps

In our previous work, we extended the Local Affine approach (a)
by showing that the local affine depth-, slant-, and curvature-maps
can be estimated in an optimal manner by combining different ret-
inal signals (Domini et al., 2006), and (b) by presenting a probabilis-
tic model that provides a metric scaling to these estimates (Domini
and Caudek, 2003; Domini et al., 1997; Tassinari et al., 2008).

Domini et al. (2006) hypothesized that, for any retinal signal s
measured at (x,y), it is always possible to find a mathematical
description s,(x,y) that is proportional to the local metric 3D prop-
erty p (e.g., depth, slant, or curvature):

Sp(%,Y) = kpD(X, ) + &sp, (2)

Fig. 1. Schematic representation of the elliptic paraboloid of revolution simulated in this study. The checkerboard pattern is shown for illustrative purposes only (a picture of
the actual stimuli is shown in Fig. 7). The yellow segment at the bottom of each paraboloid indicates the magnitude of the constant C that determines the elongation of the
surface. In the two experiments, participants were asked to judge (a) the curvature at the tip of the surface (the blue cross represent the two principal curvatures), (b) the
slant of a local surface patch (the green square represents the plane tangent to the surface), and (c) the depth separation between the tip and another point on the surface (red
segment). The fours paraboloids in the Figure differ for their Euclidean, but not for their Affine, structure.
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where ki, is a constant that depends on the visual scene and &, is
the measurement noise of sy(x,y). The measurement noise is as-
sumed to be Gaussian with zero mean and standard deviation op.

Definition 1. The appropriate mathematical description of the
signal s provides an estimate sp(x,y) of the local affine property-
map p.

Consider the recovery of surface curvature from the optic flow.
If we are looking for a description that is invariant within an affine
space, then v(x,y) directly specifies the local affine curvature-map
with the additive uncertainty &, : &[v¢(X,y)] = k,.c(x,y). For the
points (xo,y0) and (x1,y1) belonging to a local neighborhood, v{x,y)
allows judgements of the type: c(xo,y0) > c(X1,¥1), that is, the curva-
ture at (xg,yo) is larger than the curvature at (xq,y;). In fact,
E[vc(X0,Y0)] > E[Ve(X1,¥1)] <= €(X0,¥o) > C(X1, Y1)

1.1.4. Estimation of local affine maps from velocity signals

In this section, we will show how the local affine depth-, slant-,
and curvature-maps can be estimated from the velocity field. The
relative velocity field produced by the projection of a surface’s
rotation about the vertical axis can be approximated by the follow-
ing equation:

w
v:(x,y) ~ ZZ(x,y) + &y, (3)

where w is the angular velocity, zsis the absolute distance to a ref-
erence point on the surface, and ¢,, is additive Gaussian noise. Eq.
(3) shows that the velocity field is proportional to the depth-map.

The gradient of the velocity field, defined as the def component
of the optic flow, is proportional to the slant-map:

vi(x,y) = def(x,y) ~ gso«,y) e, (4)

where &5 is Gaussian noise affecting the def measurement (Koend-
erink, 1986).

The intensity of the second-order spatial derivative of the veloc-
ity field is proportional to the curvature-map:

(03]
ve(x,y) zz—fC(x,y) + &y, (3)

where ¢, is additive Gaussian noise.

We hypothesize that the additive Gaussian noise of Egs. (3)-(5)
is constant only within a small neighborhood. In other words, a,,
varies across different local neighborhoods; the same can be said
for o, and oy

It is beyond the scope of the present work to describe how the
local affine maps can be estimated from other image signals (e.g.,
shading or texture). What is important for the present discussion
is the hypothesis that, for each image signal, it is possible to find
a mathematical description that is proportional to the local
depth-, slant-, or curvature-map.

1.1.5. The intrinsic constraints model

So far, we discussed the problem of estimating the local affine
depth-, slant-, and curvature-maps from a single image signal.
Now, let us focus on the estimation of local surface curvature
and let us consider the case of multiple image signals (Cutting &
Vishton, 1995). In the previous sections, we have shown that a lo-
cal estimate that is proportional to true curvature can be derived
from each signal. These estimates are represented as random vari-
ables, say v(x,y) for curvature from velocity and t{x,y) for curva-
ture from texture. Domini et al. (2006) proposed that the visual
system combines these estimates in an optimal weighted sum

re(X,y) = W, v (X,y) + wite(X,y), (6)

where the weights are

E(Sc)
0%

s (7)
for s = ¢,t. Such combination is optimal in the sense that it maxi-
mizes the Signal-to-Noise Ratio (SNR) of the combined estimate
rdx,y).

The SNR of the optimal combination of Eq. (6) is termed p{(x,y):

_ Ere(x,y)] 3
putny) = LI ®

It can be shown the SNR of the combined estimate obtained from
the two signals is given by:

Pex,y) = \/SNR (x,9) + SNRZ(x, ). 9)

For multiple signals s;,

Pc(x.y) = \/ZiSNRE (x.). (10)

If only one-cue is present, for example velocity, then p.= SNR,..

Eq. (10) describes what has been termed the Intrinsic Constraint
(IC) model. For a discussion of the similarities and the differences
between IC and the modified weak fusion (MWF) model (Landy,
Maloney, Johnston, & Young, 1995), see Domini and Caudek
(2009), MacKenzie, Murray, and Wilcox (2008).!

1.2. Metric judgements

We have shown how the information provided by multiple im-
age signals (velocity, texture, shading, etc.) can be combined to ob-
tain the most precise estimate of a local affine property-map (e.g.,
curvature). But we have not said anything about how metric judg-
ments can be obtained. Domini et al. (2006) hypothesized that the
(metric) curvature ¢’ perceived at the point (x,y) is a monotonic
function of p{x,y):

C/(X7y) :f[pc(xsy)]' (11)

Domini and Caudek (in press) speculated that perceived 3D shape is
found through heuristic procedures that depend both on the func-
tion f of Eq. (11) and on the context in which each local surface
patch is embedded. When the viewing conditions are kept constant,
therefore, the perceptual estimates of curvature (or of any other
metric property p) should only depend on p.(x,y).

1.3. Rationale of the present investigation

In two experiments, we tested a basic assumption of the models
described in the Introduction. According to “Euclidean” theories,
the perceptual estimates of depth, slant, and curvature must be
mutually consistent. According to the approach proposed by Dom-
ini et al. (2006), instead, these perceptual estimates are inconsis-
tent with each other.

The logic underlying the IC model is summarized in Fig. 2 for
the particular case of a velocity-only stimulus. Image operators ex-
tract the zero-, first-, and second-order spatial properties of the
velocity field (see Egs. (3)-(5)). v, vs, and v, are the estimates of
the local affine depth (z), slant (s), and curvature (c) maps, respec-
tively. We hypothesize that the SNR of these estimates determines,
through a heuristic function, the magnitude of perceived depth,
slant, and curvature.

! According to MWF, the most widely used model of cue combination, different
image signals are independently processed so as to obtain unbiased estimates of the
metric properties of the environmental objects. These unbiased estimates are then
combined with weights proportional to the reliability of each estimate. MWF is
optimal in the sense that it maximizes the reliability of the metric solution. Note that
MWEF does not attempt to maximize the reliability of the local affine solution.
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Fig. 2. The 3D rotation of an elliptical surface about the vertical axis generates a retinal velocity field. Image operators extract estimates of the zero-order (#,), first-order ( zs),
and second-order () spatial properties of the velocity field, which are proportional to depth (z), slant (s), and curvature (c), respectively. The SNRs of these estimates (i.e., p,

ps, and p.) are the IC predictors of the perceived local metric properties z/, s, and c'.

The purpose of the present investigation was to test whether
judgments of depth, slant, and curvature are consistent with each
other. Suppose that the perceived (local) curvature of a velocity-
only stimulus matches that of a shading-only stimulus. This does
not mean that the two stimuli will be perceived as having also
the same (local) depth or slant. According to IC, two stimuli are
matched in perceived curvature because the local estimates pro-
portional to curvature, which are recovered from the two stimuli,
have the same SNR value. In two stimuli, however, the encodings
of local depth, slant, and curvature may be characterized by differ-
ent SNRs. If the perceptual estimates depend on such SNRs, there-
fore, judgments of depth, slant, and curvature may not be
consistent with each other. This hypothesis was tested in Experi-
ment 1 for the case of single-cue stimuli.

Now, consider the case of multiple-cue stimuli (see Fig. 3).
According to IC, the visual system recovers from each image signal
an estimate that is proportional to the local property p (¢,, s, and v,
for velocity, s,, ss, and s. for shading, and so on). The estimates of
the same property p (e.g., curvature) are then combined according
to Eq. (6). We hypothesize that the perceptual metric judgment of
the property p is a monotonically increasing function of the SNR of
the combined estimate ry(x,y).

Two predictions follow from these premises. (1) The judgments
of the metric 3D properties are expected to increase as more image
signals are added to a stimulus display. (2) An increase in the num-
ber of image signals does not reduce the inconsistency of the esti-
mated depth, slant, and curvature magnitudes. These predictions
were tested in Experiment 2.

2. Experiment 1

The experiment comprised two parts: the selection of the
appropriate stimulus parameters and the test of the basic assump-
tion of the IC and “Euclidean” models described above (see Table
1).

Selection of stimulus parameters. The stimuli were single-cue
renderings of elliptic paraboloid of revolution. Participants were
asked to judge which of two sequentially-presented stimuli evoked
the largest amount of perceived curvature at the center of the
bounding-contour of the stimulus displays (see Fig. 1). One of the
stimuli provided texture-only information and remained constant
across all trials (standard). The other stimulus was rendered by
velocity-only or shading-only information and was varied in each
trial (comparison).

Physical Object

Image

Shading Texture

Estimate Vv V4 V4

SNR

, s’
Percept Z \ @

Fig. 3. According to IC, from each image signal [velocity (v), texture (t), or shading
(s)] the visual system recovers an estimate that is proportional to local depth (z),
slant (s), or curvature (c). The estimates v, v, and 7. are recovered from velocity; s,,
ss, and s, are recovered from shading; t,, t;, and t. are recovered from texture. The
visual system then combines all the estimates that are proportional to each specific
property p (e.g., curvature). The IC combination rule maximizes the SNR of the
recovered local affine property-map. According to IC, the magnitudes of z, s’ and ¢’
are determined by the SNRs of the recovered depth-, slant-, and curvature-maps.

According to IC, a curvature match is found when the relevant
estimates (pp,) recovered from the two stimuli have the same
SNR. To obtain a curvature match, we manipulated the SNR of
the comparison stimulus by varying the relevant scene parameters.
For the velocity signal, the SNR is:
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Table 1
Design of Experiment 1.
Standard Comparison Independent Match
variable
Part 1 Texture- Velocity- Shading- Scene Curvature
only only only parameters
Depth
Part 2 Texture- Velocity- Shading- Elongation Slant
only only only
Curvature
Ve (Xa y )
SNR,, = c(x,y), (12)

O yc Zfo-vc

where the subscript , stands for “velocity” and . stands for “curva-
ture” (see Eq. (5)). The SNR depends on the scene parameters « and
z5, the distal property c, and the noise o,.. By varying w, we changed
the SNR by leaving the simulated 3D structure unchanged. In an
equivalent manner, the SNR of the shading-only comparison stimu-
lus was varied by changing the illuminant direction (see also Cau-
dek, Domini, & Di Luca, 2002; Christou, Koenderink, & van Doorn,
1996; Curran & Johnston, 1994, 1996; Erens, Kappers, & Koenderink,
1993; Johnston & Passmore, 1994a, 1994b; Koenderink, van Doorn,
& Kappers, 1992, 1996; Pentland, 1982; Todd, Koenderink, van
Doorn, & Kappers, 1996; Todd & Mingolla, 1983). The goal was to
generate the renderings of two pairs of elliptic paraboloids of revo-
lution, both having the same simulated elongation, that evoked the
same amount of perceived curvature at the target location: a tex-
ture-only standard and shading-only comparison, and a texture-only
standard and velocity-only comparison.

Test of IC and “Euclidean” models. In each trial, participants re-
ported which of two successively-presented stimuli (standard or
comparison) had the largest amount of depth (z), slant (s), or curva-
ture (c) - see Fig. 1. Depending on their response, the elongation of
the (shading-only or velocity-only) comparison stimulus was varied
within a staircase procedure; the elongation of the texture-only
standard was kept constant. The “scene parameters” (i.e., the angle
of rotation for the velocity-only stimulus and the illuminant direc-
tion for the shading-only stimulus) were set to the values found in
the first part of the experiment.

According to “Euclidean” theories, two geometrically-identical
stimuli that are perceived as having the same curvature should
also be perceived as having the same slant and depth. For the
velocity-only and texture-only pair, we should have that

Zy =27, (13)
Sy =S¢, (14)
Cy = Ct. (15)

According to IC, a local depth, slant, or curvature match occurs only
if

Wo
SNRyZ = ZmZy == SNR[Z, (16)
SNRys = - 2% 5, — SNRy, 17)
Z£ O ys
SNR,e = -2 ¢, = SNR,.. (18)
ZfOyc

As the consequence of the manipulation of the first part of the
experiment, we know that observers perceive the same amount of
curvature at the tip of the two surfaces: c, = ¢;. Regardless of this,
IC predicts that the two stimuli will not have the same perceived
depth or slant. The encodings of curvature, slant, and depth, in fact,
may be affected by different levels of noise. The same reasoning can
also be applied to the shading-only and texture-only pair.

A test of IC requires the knowledge of the SNRs of Egs. (16)-
(18). Domini and Caudek (2009, 2010) demonstrated that these
quantities can be empirically found by the ratios between the
Points of Subjective Equality (PSEs) and the Just Noticeable Differ-
ences (JNDs) computed from the psychometric functions estimated
through the procedure described in the following section.

2.1. Method

2.1.1. Apparatus and stimuli

The stimuli were generated by means of custom software mak-
ing use of the OpenGL libraries. Stimuli were rendered at 60 fps
and the screen update was synchronized with the monitor refresh.
Stimuli were presented on a ViewSonic P70f color monitor con-
trolled via a Dell Dimension 8100 with a Nvidia FX9600 graphic
card. The resolution of the monitor was 1280 x 1024 and the re-
fresh rate was 60 Hz.

Participants viewed the monitor monocularly by wearing an
eye-patch. With a chin-rest, the viewing distance was kept at
250 cm to minimize the influence of accommodation cues (e.g.
Mather, 1997; Watt, Akeley, Ernst, & Banks, 2005). The monitor
was contained within a viewing-box; a squared viewing-window
measuring 20 x 20 cm (4°35’ of viewing angle) limited the visible
portion of the monitor. When stimuli were not presented, the
monitor was occluded so as to reinforce the impression that the
stimuli were tangible objects inside a box. To prevent dark adapta-
tion, a dim light source (5 W) was positioned away from the line of
sight.

The stimuli simulated the parallel projection of an elliptic
paraboloid of revolution:

2=5x0.66(x2+)?), (19)

where S is the stretch parameter, z is the amount of depth simulated
behind the monitor’s surface, x and y are the screen positions. The
visible bounding-contour of the surface was circular, with a radius
r, = 2.5 cm (viewing angle 1°8").

The standard and comparison quadratic surfaces were rendered
by only one visual cue: velocity, texture, or shading.

Velocity: The low-albedo smooth surface was scattered with
about 80 high-albedo dots (diameter =0.1 cm). The dots were
randomly distributed on the image plane, with a minimum dis-
tance of 0.125 cm among their centers. The simulated surface
performed one sinusoidal oscillation at 1 Hz around a vertical
axis at half of the surface’s depth.

Texture: A volumetric texture technique was employed to gen-
erate a sculptured representation of the surface. The surface
intersected a number of spheres having a diameter of 0.5 cm.
These spheres were positioned with their centers on the surface
so that they did not intersect each other. Points of the surface
within the spheres were simulated with a different albedo than
points outside. An anti-aliasing technique was used to create a
smooth border between the two regions (see Fig. 7).

Shading: A standard Phong model with Lambertian reflectance
function determined the amount of screen luminance at every
point (Foley & Van Dam, 1983). Since the object was a simple
convex shape, no cast-shadow algorithm was needed. The light
source consisted of nine point light-sources at optical infinity
arranged in a 3 x 3 array. The difference in the angle of incident
light for the row and columns of the array was 5°. The light source
was positioned 15° on the right from the vertical (see Fig. 7).

2.1.2. Participants
A total of ten undergraduate and graduate students from Brown
University participated in the experiment. They all had normal or
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corrected-to-normal vision. All participants were ndive to the pur-
pose of the study, but most of them were experienced psychophys-
ical participants. All participants were run individually and
completed the experiment in three 1 h sessions consisting of two
blocks of trials.

2.1.3. Procedure

Selection of stimulus parameters. The comparison was a shading-
only or a velocity-only stimulus; the standard was a texture-only
stimulus. For both stimuli, the stretch parameter S took on the va-
lue of 1.0.

Each trial comprised the successive presentation of a standard
and a comparison stimulus, with the order of presentation random-
ized. Participants were asked to determine which of the two stim-
uli evoked the greatest amount of perceived curvature at the tip of
the quadratic profile. The 3D rotation speed (for the velocity-only
comparison) or the illuminant direction (for the shading-only com-
parison) were varied within a staircase procedure until a curvature
match was obtained.

Four interleaved staircases (3up-ldown, 2up-ldown, 1lup-
2down, 1up-3down) were employed. The staircases started at
60°, 50°, 20°, 10° for the direction of illumination and at 30°, 25°,
10°, and 5° for the amount of rotation. The staircase-step was 5°
before the first reversal and 1° afterwards. Each staircase stopped
after four reversals. If all the staircases were not completed within
the 25 min session, the participant’s data were discarded.

The data were fitted with cumulative Gaussians free to vary in
position (PSE) and slope (JND) using the software package psig-
nifit (Wichmann & Hill, 2001). From the fitted psychometric
functions, we determined the point of subjective equality (PSE)
and the difference threshold [just-noticeable difference (JND)].?
The values of these PSEs were then used for generating the stimuli
of the main part of the experiment. Different values for the angle
of rotation and for the illuminant direction were used for different
participants, according to their PSEs.

Test of IC and “Euclidean” models. Participants reported which of
two successively-presented stimuli had the greatest amount of
curvature, slant, or depth at the target location, depending on the
icon presented at the beginning of the trial (see Fig. 1). Each trial
began with the presentation of an icon indicating the requested
judgment (depth, orientation, or curvature). After 300 ms, the icon
disappeared and after 500 ms the standard and comparison stimuli
were sequentially presented in random order at different monitor
positions. Each stimulus was shown for 1000 ms. Participants used
the mouse buttons to provide their response. The next trial started
500 ms after each key-press. A short practice session was provided
at the beginning of each block of trials.

In all trials, the stretch parameter of the texture-only standard
stimulus was kept constant: S =1.0. The stretch parameter of the
velocity-only or shading-only comparison stimulus was manipu-
lated within a staircase procedure. The PSEs for the stretch param-
eter S of the comparison stimuli were determined by means of four
interleaved staircases. The staircases started at 2.0, 1.5, 1.0, and 0.5.
The staircase-step was 0.125. Participants performed about 600 tri-
als during the experiment.

2 The PSE corresponds to the angle of rotation or the illuminant direction at which
the psychometric function reaches 0.5. That is, the PSE is the point at which the
texture-only and the velocity-only surfaces, or the texture-only and the shading-only
surfaces, were equally often judged as having the same curvature at at the tip of their
elliptic profile (see Fig. 1). The JND is defined as the difference between the PSE and
the 0.84 point on the psychometric function (= the angle of rotation or the illuminant
direction for which the comparison stimulus is judged to be more curved 84% of the
time). The 0.84 point is usually used to define the JND because then the JND
corresponds to the standard deviation ¢ of the cumulative Gaussian fitted to the data
(e.g., Helbig & Ernst, 2007).

2.1.4. Design

A 2 x 3 within-subject design was used (see Table 1), with two
cue-conditions (motion or shading comparison-stimuli) and three
task-conditions (curvature, slant, depth judgments).

2.2. Results and discussion

Selection of stimulus parameters. Across participants, the average
PSE for the velocity-only comparison stimuli was equal to
14.5+4.3° (s.e.); the average PSE for shading-only comparison
stimuli was equal to 24.9 + 4.1° (s.e.). Average JNDs for the angle
of rotation and for the angle of illumination were 7.98 +1.81°
(s.e.) and 10.24 £ 2.63° (s.e.), respectively. These results indicate
that the manipulation of the angle of rotation and of the illuminant
direction affected the perceived curvature of the comparison stim-
ulus (see Appendix).

Test of IC and “Euclidean” models. Fig. 4 shows the results for the
six experimental conditions. On the y-axis of each panel is shown
the average depth, slant, and curvature of the comparison stimulus
at the PSE. The dashed lines represent the depth, slant, and curva-
ture values simulated for the standard stimulus. Values above the
dashed lines indicate that, at the PSE, the comparison stimulus
had larger amounts of simulated curvature, slant, and depth than
the standard. The average JNDs corresponding to the six PSEs re-
ported in the Figure are shown in Table 2. Note that, as the JNDs
increased, a larger value of the stretch parameter was needed for
the comparison stimulus in order to obtain a perceptual match.
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Fig. 4. Experiment 1. Average PSE values of the shading-only and velocity-only
comparison stimuli computed from the psychometric functions for the depth-,
slant-, and curvature-matching tasks. The dashed lines represent the curvature,
slant, and depth values simulated for the standard stimulus. Error bars represent
one standard error of the mean.
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Table 2
JNDs for Part 2 of Experiment 1.

Comparison stimulus

Velocity-only Shading-only
Curvature 0.244 0.144
Slant 0.272 0.595
Depth 0.175 0.580

Inferential statistics on the observers’ responses are based on a
Linear Mixed-Effects (LME) model specifying participants as a ran-
dom factor to control for their associated intraclass correlation.> A
2 (cue of the comparison stimulus: velocity or shading) x 3 (judg-
ments of depth, slant, or curvature) LME model revealed a signifi-
cant 2-way interaction, y% = 13.594, p =.001. If judgments of
perceived curvature, slant, and depth were consistent with each
other (this is the basic assumption of the “Euclidean” theories),
once standard and comparison stimuli had been matched in terms
of perceived curvature, they should also be matched in terms of
slant and depth. The three data points in Fig. 5 (left panel) should
therefore coincide with the point (1, 1). For curvature-matched
stimuli, instead, we found that the average PSE was larger for the
shading-only than for the velocity-only comparison stimuli for
the slant judgments, tss = 4.896, p =.001. Moreover, the average
PSE was larger for the shading-only than for velocity-only compar-
ison stimuli for the depth judgments, t55 = 4.333, p =.001. As a con-
trol, we also examined the PSEs for the curvature judgments. As
expected, the average PSEs for these judgments did not differ
across velocity-only and shading-only comparison stimuli, tss=
0.050, p = .967.

A more direct test of IC can be performed according to Egs.
(16)-(18) by estimating the SNRs with the PSE/JND ratios (see
Domini & Caudek, 2009, 2010). Here, we computed the reciprocal
of the SNRs because they are less sensitive to the variability of
the JND estimates. Note that the ratio J]ND/PSE may be more easily
comprehended as a coefficient of variation, defined on the standard
deviation and mean. The coefficient of variation is proportional to
the Weber fraction (e.g., Bizo, Chu, Sanabria, & Killeen, 2006). Fig. 5
(right panel) shows the average 1/SNR of the shading-only compar-
ison stimuli as a function of the velocity-only comparison stimuli.
For a perfect correspondence between observed data and predic-
tions, the three points on the graph should lie on the 45° dashed
line. When considering the 95% confidence intervals, we can con-
clude that the observed data and the predictions of IC are very clo-
sely matched, indeed.

3. Experiment 2

In Experiment 2, we tested whether the results of Experiment 1
could be replicated with a larger number of depth cues. The exper-
imental design was similar to Experiment 1, with two main differ-
ences: (a) the comparison stimulus had three cues, whereas the
standard had either one or two cues, and (b) the standard stimulus
took on two different elongations (see Table 3).

According to the “Euclidean” theories, improvement in depth
constancy is expected if multiple, mutually consistent depth-cues
are provided (e.g., Hoffman, Girshick, Akeley, & Banks, 2008; Landy
et al., 1995; Richards, 1985; Watt et al., 2005).

3 We used the 1mer program (1me4 package) in the R system for statistical
computing (R Development Core Team, 2010). As indicated by Baayen (2008), p
values and confidence intervals are generated from the posterior distribution of
parameter estimates with Markov Chain Monte Carlo methods, using the mcmcsamp
program in the 1me4 package with default specifications (e.g., n=1000 samples;
locally uniform priors for fixed effects; locally non-informative priors for random
effects).

According to IC, instead, a larger number of depth-cues does not
guarantee better (more veridical) performance. The inconsistency
of metric judgements can persist (or even worsen) for multiple-
cue stimuli, because the local estimates of the affine property maps
do not carry metric information. With more image signals, instead,
the estimates of the metric properties should take on larger values,
because p, (i.e., the SNR of the combined estimate of the local af-
fine structure) increases.

With the visual cues used in Experiment 2, the IC model can be
tested as follows. Let us consider the curvature-matching task -
the same considerations also apply to the slant- and depth-match-
ing tasks. According to IC, a perceptual match occurs when the
same value p, is generated by the three-cue comparison and by
the one-cue or two-cue standard stimuli. For the single-cue stan-
dard stimuli, we can write:

ko

SNR,. = 7. o (20)
ke

SNR;e = G—ftcco, (21)

SNR,. = ﬁco, (22)
USC

where co denotes the amount of curvature simulated in the
experiment.

The SNR of a combined two-cue stimulus is given by Eq. (9). By
substituting the above SNRs in Eq. (9), we obtain:

ko N2 (ke )2

put = (G—> +(a—) . (23)
2 2

Pos = <k—m> + <&> Co, (24)
_ kic : ks 2

P = (;) *(a:) . (25)

For the three-cue comparison stimulus, the SNR becomes:

kye 2 ki 2 Ksc 2
pm—\/ ((7) +(0_—w) (&) (26)

where c is the amount of simulated curvature that is varied through
the staircase procedure.

Let cg, Cp, and cgp (With a,b € {#,t,s} and a # b) be the curvature
at the PSE of the comparison stimulus matched with a single-cue or
a two-cue standard, respectively. According to IC, there is a specific
relation between c,p, on the one side, and c, and c, on the other.

For example, at the PSE, the perceptual matches of the velocity-
only and texture-only standards with the three-cue comparison will
be:

2 2 2
JE) () () e
(O Otc Osc O yc
kl)C 2 ktC 2 kSC 2 ka
¢(%) (B (e e g, 28

At the PSE, the perceptual match of the velocity-texture standard
with the three-cue comparison will be:

(& & e () e
T yc Ot Osc O yc Otc
From Egs. (27)-(29), it follows that

Cor = 4/C2 + 2. (30)
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Table 3
Design of Experiment 2.
Standard Comparison Independent variable Judgment
Part 1 Texture-only Velocity-only Shading-only Scene parameters Curvature
One-cue Three-cues Curvature
Part 2 Two-cue Three-cues Elongation Slant
Depth

The same relationship holds for any pair of cues and any local
property:

Peica = /P4 + D2

where p denotes the magnitude of the metric 3D property (e.g., z, s,
c), and the subscripts ., o denote the two cues.

In conclusion, if a perceptual match depends on the SNR, as
hypothesized by IC, then Eq. (31) describes the relation between
the PSE of the comparison stimulus matched with a two-cue stan-
dard and the PSEs of the comparison stimuli matched with the
one-cue standard stimuli.*

31)

3.1. Method

3.1.1. Participants

Four undergraduate students, one graduate student, and the
first author participated in the experiment. All participants com-
pleted the experiment in six 1 h sessions.

3.1.2. Procedure and stimuli

Selection of stimulus parameters. The procedure was similar to
Experiment 1. Participants matched the perceived curvature of a
texture-only standard stimulus with the perceived curvature of a
motion-only or shading-only comparison. The simulated elliptic
paraboloid of revolution was z =S x 0.495(x? + y2).

Test of IC and “Euclidean” hypotheses. The comparison stimulus
was rendered by three cues (motion, texture, and shading); the
standard stimulus was rendered either by one (shading, motion,
or motion) or by two cues (shading-motion, texture-motion, or

4 In the above discussion, we obviously assume that the stretch parameter S of the
standard stimulus remains constant.

texture-shading). In this way, standard and comparison stimuli
were always defined by different sets of cues.’

The stimuli were similar to those of Experiment 1, except for
the presence of small differences in simulated albedo, which al-
lowed reliable motion signals. To this purpose, small dots were
added to the stimuli providing shading information. Surfaces ren-
dered by texture information did not contain these additional dots.
For consistency, the dots were present also with stationary shad-
ing-only stimuli.

The stretch parameter S of the comparison stimulus was varied
across trials within a staircase procedure. For each experimental
condition, a 1-up-1-down staircase procedure was used to find
the stretch parameter required for perceiving the comparison stim-
ulus with the same curvature, slant, or depth as the standard (see
Fig. 1). In different sessions, the staircase started with the stretch
parameter of the comparison stimulus set to a value either 0.5
times higher or 1.8. The number of trials per participant ranged be-
tween 2200 and 3400. The standard stimuli provided one or two
cues, with a stretch parameter that was either 1.00 or 1.66.

3.1.3. Design

There were 36 experimental conditions within-observer (see
Table 3): six cue conditions (texture-only, motion-only, shading-
only, texture-motion, texture-shading, motion-shading standard
stimuli) crossed with two stretch-parameter conditions (S=1.00
or 1.66), and three task conditions (judgment of depth, orientation,
or curvature). For each condition, each observer run one 1-up-1-
down staircase.

5 The two elliptic paraboloids of revolution were rendered by different cues or by
different combinations of cues in order to prevent participants to perform the task by
simply matching the 2D features of the stimulus displays.
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3.2. Results and discussion

Selection of stimulus parameters. As in Experiment 1, the manip-
ulation of the viewing parameters (i.e., the angle of rotation and
the illuminant direction) affected the amount of perceived curva-
ture. The PSEs computed for each participant were used to choose
the angle of rotation and the illuminant direction for the second
part of the experiment.

Test of IC and “Euclidean” hypotheses. The left panel of Fig. 6
shows the average PSEs computed for the 36 experimental condi-
tions of Experiment 2. The average amounts of depth, slant, or cur-
vature of the comparison stimuli at the PSE are shown on the y-
axis; the x-axis indicates the visual cues comprising the standard
stimuli.

A 6 (cue of standard stimuli) x 3 (surface property) x 2 (stretch
parameter) LME analysis revealed that a model with a 3-way inter-
action did not differ significantly from a model with the three main
effects and a Cue x Property interaction, 3, = 25.776, p = .079.
The 2-way interaction between cue and property was significant,
730 = 30.179, p = .001. This result replicates what found in Exper-
iment 1: two geometrically-identical stimuli that are perceptually
matched in terms of curvature are not matched in terms of per-
ceived slant or depth.

The test of IC performed according to Eq. (31) is shown on the
right panel of Fig. 6. The x and y axes report the IC’s predictions
and the observed PSEs, respectively. A perfect match between the
model’s predictions and the data is given by the 45° line. The
LME regression of the observed PSEs on the model’s predictions
produces an intercept of 0.164 not significantly different from zero,
p =.308, 95% CI: [-0.181, 0.504], and a slope of 1.086, not signifi-
cantly different from 1.0, 95% CI: [0.985, 1.193]. An alternative
(“Euclidean”) LME model was run, with the stretch parameter of
the standard stimulus as the only fixed effect. The first model, with
the IC’s predictions and the individual differences, explained 84% of
the variance of the PSEs. The second model, with the stretch
parameter and the individual differences, explained only the 17%
of the variance of the PSEs. We can thus conclude that the predic-
tions of IC are in very close agreement with the empirical data. It is
important to stress that the IC predictions were formulated with
no free parameters.

4. General discussion

In two experiments, we investigated the consistency of percep-
tual judgments of local depth, slant, and curvature. IC hypothesizes
that (a) the noise levels affecting the encoding of a surface property
(e.g., curvature) vary with retinal image location, (b) different lev-
els of noise affect the encoding of a surface property in different
image signals, or combinations of image signals, and (c) the SNR
of the local encoding of a surface property determines the percep-
tual metric estimate of that property (see Fig. 3). From these
hypotheses it follows that judgments of depth, slant, and curvature
should not be consistent with each other.

An example of this is provided in Fig. 7, where two elliptic
paraboloids of revolution having the same elongation are rendered
by texture information (left panel) and shading information (right
panel). Typically, the curvature at the center of the display is per-
ceived to be larger for the shading stimulus. For a local curvature-
match, therefore, we should reduce the elongation of the shading
stimulus. In Fig. 7, however, observers perceive a larger relative
depth between the tip of the paraboloid and the bounding-contour
for the texture than for the shading rendering. For a depth-match,
therefore, we should reduce the elongation of the texture stimulus.
Finally, near the boundary of the display, local slant appears to be
shallower for the shading stimulus. For a local slant-match, there-

fore, we should increase the elongation of the shading stimulus.
This example shows that the perceptual judgments of depth, slant,
and curvature are mutually inconsistent. Therefore, they cannot be
described by an affine mapping between the environmental ob-
jects and the perceived 3D shape.

Participants varied the elongation of a elliptic paraboloid of
revolution in a two-interval forced-choice (2IFC) task until it
was perceptually matched to another elliptic paraboloid in terms
of depth, slant, or curvature. The two surfaces were rendered by
different cues. From the results of this task, we can conclude
that perceptual judgements are inconsistent if (a) different elon-
gations of the two surfaces are found at the PSE, and (b) these
elongations depend on the surface’s property being judged
(depth, slant, curvature).

For selecting the appropriate stimulus parameters, in Experi-
ment 1 the angular velocity was varied within a staircase proce-
dure until the perceived curvature of a velocity-only paraboloid
matched that of a texture-only paraboloid. The same was done
for the illuminant direction of a shading-only paraboloid. All three
stimuli (velocity-only, shading-only, texture-only) had the same
simulated elongation. The angular velocity and the illuminant
direction at the PSE were then used to generate the stimuli of
the main part of the Experiment.

In the main part of Experiment 1, participants were asked to
compare the shading-only and texture-only paraboloids in terms
of perceived depth, slant, or curvature. The same was done for the
velocity-only and texture-only paraboloids. The elongation of the
velocity-only or shading-only paraboloid was varied within a stair-
case procedure until a perceptual match was found. For depth and
slant judgments, we found that the shading-only paraboloid had a
larger elongation at the PSE than the texture-only paraboloid; for
the curvature judgments, instead, the two paraboloids had the
same elongation at the PSE. In other words, it was not possible to
find a depth elongation for which the shading-only paraboloid
was perceived as having the same depth, slant, and curvature as
the texture-only paraboloid. Such results violate the fundamental
assumption of the “Euclidean” theories, because it implies that
the estimated depth-, slant, and curvature-maps were not consis-
tent with each other.

In Experiment 2, the simulated elongation of a paraboloid ren-
dered by three cues (velocity, shading, and texture) was varied un-
til it was perceptually matched in depth, slant, or curvature to a
fixed paraboloid rendered by either one (velocity, shading, or tex-
ture) or two cues (texture-motion, texture-shading, or motion-
shading). Therefore, the stimulus displays were richer than in
Experiment 1. None-withstanding this difference, different elonga-
tions of the three-cue paraboloid were found at the PSE for judg-
ments of depth, slant, or curvature. Moreover, larger elongations
were found at the PSE for two-cue (rather than one-cue) standard
stimuli.

Note that “Euclidean” models cannot provide a priori quantita-
tive accounts of these systematic biases, nor they can explain why
the estimates of different metric properties (such as depth, slant,
curvature) are inconsistent with each other. A quantitative account
of the present results, instead, can be provided by the process
exemplified in Fig. 3. Figs. 5 and 6 show that the quantitative pre-
dictions of IC are in good agreement with the data of both Experi-
ments 1 and 2. Similar results were found by Shah, Domini, and
Caudek (submitted for publication) for depth judgments of natural
(as opposed to virtual) stimuli defined by velocity and/or disparity
information.

IC is based on the analysis of the local affine structure. We do
not propose, however, that perceived global 3D shape should be
described in terms of an affine transformation of the environmen-
tal object (see Fig. 7). At the contrary, in our previous work we
have advocated the opposite view. For example, we found that
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Fig. 6. Experiment 2. The three rows show the results of the depth-, slant-, and curvature-matching tasks (top, center, and bottom, respectively). The stretch parameter S of
the standard stimulus is coded by color: 1.0: white; 1.66: gray. Left: The y-axis of each panel shows the average PSE value of the (variable) three-cue comparison stimulus. The
x-axis indicates the image signals of the (fixed) standard stimulus to which the comparison was perceptually matched. The shading, texture, and velocity signals are denoted
by “s”, “t”, and “v”, respectively. A single letter denotes a one-cue standard; two hyphenated letters denote a two-cue standard. Error bars represent one standard error of the
mean. Right: The y-axis of each panel shows the observed PSE of the comparison stimulus matched to a two-cue standard (e.g., “s-t”); the x-axis shows the predictions of the IC
model computed by means of the PSEs of the comparison stimuli matched to the corresponding one-cue standard stimuli (e.g., “s” and “t") - see Eq. (31). Each point
corresponds to one observer. The symbols in the plots are coded as follows: B = s—t; ¥ = v-s; A = v-t.

perception of global Structure-from-Motion is neither Euclidean
nor Affine (Domini & Braunstein, 1998; Domini et al., 1998), in
spite of the fact that first-order motion information is ambiguous
only up to a one-parameter family of solutions. For other cues, like
disparities or texture, the perceptual distortions are well docu-
mented to be non-affine (Todd, Thaler, Dijkstra, Koenderink, &
Kappers, 2007). We can safely assume, however, that within a local
neighborhood the perceptual map is affine. This requires the exis-
tence of mathematical transformations of the local image signals

that are linearly related to the properties of the environmental
object (depth, slant, or curvature).

In several investigations, IC has provided successful accounts of
perceptual performance in local affine and metric tasks, for both
single-cue and combined-cue stimuli (Di Luca, Domini, & Caudek,
2007; Domini & Caudek, 2009; Domini & Caudek, 2010; Domini
et al., 2006; Tassinari, Domini, & Caudek, 2008). To account for
the psychophysical data, IC makes use of heuristic procedures that
generate biased metric estimates of 3D properties. A natural
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Fig. 7. Texture-only and shading-only rendering of the elliptical paraboloid of revolution defined by Eq. (1) with C = 0.33. This is an example of the stimuli that were actually

used in Experiment 1.

question then arises: How is it possible to reconcile the predictions
of IC (and the empirical data coming with it) with the obvious
fact that we successfully interact with our visual environment
(apparently without any systematic bias)?

A possible answer to such question is that visually-guided
behavior may not require an internal representation of external
space but, rather, it may be based on more concrete representa-
tions directly linked with the sensory channels. The input patterns
may be mapped in a task-dependent way into output patterns
without requiring the full specification of the metric depth-map
of the spatial layout (Bradshaw et al., 2000; Gdrding, Porill, May-
hew, & Frisby, 1995; Glennerster et al., 1996; Morasso & Sangui-
neti, 1997; Todd, 2004).

Consistently with such point of view, we hypothesize that visu-
ally-guided behavior is mainly driven by direct information about
the external 3D space (see also Thaler & Goodale, 2010). Such
“weaker” non-metric representation has the advantage of being
more constrained from a mathematical point of view than the
computation of metric structure. Therefore, it is more robust to-
wards sensor noise (Robert, Zeller, Faugeras, & Hebert, 1997).
Moreover, non-metric representations require a lower computa-
tional cost (Beardsley, Reid, Zisserman, & Murray, 1995; Faugeras,
1995; Koenderink & van Doorn, 1991; Todd, 2004). All these
advantages make IC better suited for a biological system than an
“Euclidean” analysis.

5. Conclusions

We found that local judgements of depth, slant, and curvature
of smoothly-curved surfaces rendered by single-cue or multiple-
cue stimuli are not congruent with each other. Such findings are
inconsistent with “Euclidean” models of 3D shape recovery, but
they can be explained by the IC model (Domini et al., 2006).
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Appendix A

We add here some important considerations concerning the re-
sults of the first part of Experiment 1. For motion-only stimuli, we

found that perceived curvature increased as angular rotation in-
creased (Domini et al., 1997; Liter, Braunstein, & Hoffman, 1993;
Todd & Norman, 1991; Todd & Perotti, 1999). For shading-only
stimuli, perceived curvature increased as the illuminant direction
was shifted away from the viewing direction (Caudek et al.,
2002; Curran & Johnston, 1994, 1996; Johnston & Passmore,
1994a, 1994b). These results are compatible with IC, because the
variation of the scene parameters affects the measurement noise
of the local image primitives. They are also consistent with the
“Euclidean” models, because different scene parameters may in-
duce different biases in the estimation of the “missing parameters”
(for example, the parameter o in Eq. (3)).

The present data could be interpreted by saying that the aver-
age JNDs of these judgments were very large relative to the average
PSEs — about 55% and 41% for the rotation and illumination angles,
respectively, based on the ratios of the average JNDs and PSEs.
These seem to be large Weber fractions, which may indicate that
(a) the rotation angle and illumination directions were poor deter-
minants of the perceived depth elongations, and/or (b) simple
shapes specified by texture cannot be reliably matched with those
specified by motion or shading.

We should consider, however, that the precision of participants’
judgments can be expressed either in terms of the image proper-
ties or in terms of the parameters of the 3D scene. If judgments
are coded in terms of the parameters of the 3D scene (i.e., illumi-
nant direction, 3D rotation speed), the present data indicate that
the precision of participants’ judgments was indeed poor. This does
not mean, however, that the precision of participants’ judgments is
low when it is evaluated with respect to the direct information
about 3D shape provided by the retinal images.

For the shading-only stimuli, we can compare our data to those
of Pentland (1982). Pentland reports an indirect estimate of the
discrimination threshold for the illuminant direction of about
12°. Our JND of 10.23° is similar to the value reported by Pentland,
thus indicating that our participants did not under-performed in
this discrimination task.

A similar consideration can be made about the JND of 7.98° for
the 3D rotation speed. Previous investigations indicate that the
perceptual estimate of 3D rotation, further from being veridical,
is a positive function of the deformation component of the optic
flow (e.g., Domini et al., 1997). As a consequence, it is misleading
to think that a JND of 7.98° is large. First, we should describe the
participants’ task as the discrimination of velocity gradients, rather
than 3D angular speeds. Second, we should keep in mind that the
same first-order velocity field can be produced by a small rotation
and a large surface slant, or by a large rotation and a small surface
slant (e.g., Koenderink, 1986). For a constant discrimination perfor-
mance, therefore, the JND can take on different magnitudes
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expressed in terms of 3D angular rotation, depending on the slant
of the distal surface.
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