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Abstract

In three experiments we investigated whether the perception of 3D structure from the optic-flow involves a process of spatial
integration. The observer!s task was to judge the 3D orientation of local velocity field patches. In two conditions, the patches were
presented either in isolation, or as part of a global optic-flow. In Experiment 1, the global optic-flow was a linear velocity field. In
Experiment 2, the patches were embedded in a randomly perturbed linear velocity field. In Experiment 3, the local patches belonged
to a smoothly curved surface.

The results of these three experiments lead to two main conclusions: (1) a process linking spatially separated patches into global
entities does affect the perception of local surface orientation induced by the optic-flow, and (2) linearity or smoothness of the global
velocity field are not necessary conditions for spatial integration.
! 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The study of the visual processes involved in the
reconstruction of 3D structure from dynamic informa-
tion has, in the last few years, established three main
facts. First, the visual system uses only first-order tem-
poral properties (i.e., two views) in order to derive 3D
shape from moving images (e.g., Todd & Bressan,
1990; Todd & Norman, 1991). The main theoretical
implication of this finding is that perceived structures,
in general, do not have the same Euclidean properties
as the projected structures (for a review, see Norman
& Todd, 1992), since three or more views are needed
for a veridical reconstruction of 3D shape (Hoffman,
1982; Ullman, 1979). Second, a number of recent empir-

ical studies have revealed that geometric properties of
perceived structures are derived through heuristic proc-
esses that provide a non-veridical solution to the SfM
problem (Caudek & Domini, 1998; Domini & Caudek,
1999). In particular, perceived local orientation and mo-
tion of projected surfaces depend on properties of the
optic-flow that are not related in a one-to-one mapping
with the distal properties that they represent (Domini &
Caudek, 1999; Todd & Perotti, 1999). Third, perceived
local properties of smooth surfaces are not consistent
with a coherent Euclidean or affine global representation
(Domini & Braunstein, 1998; Domini, Caudek, & Rich-
man, 1998).

These findings seem to be in apparent contradiction
with our perceptual experience of coherent 3D shapes.
If local properties of smooth surfaces are derived in a
non-veridical manner and they are internally inconsist-
ent, how do we perceive smooth global surfaces? In this
paper we suggest that perceived surface orientation can-
not be understood solely in terms of a local analysis of
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the stimulus information. In particular, we will present
empirical results showing that the perceived orienta-
tion of local patches specified by dynamic random-dot
displays depends on the properties of the surround-
ing stimulus regions. Moreover, we will show that the ef-
fects of neighboring regions on the perceived orientation
of a local patch are not specific to the case of a smooth
optic-flow. To motivate our experiments, in the next
section we will briefly describe a computational formu-
lation of the analysis of local optic-flow. This for-
mulation provides a good account of empirical results
on local surface slant perception from dynamic
information.

2. Local slant perception

The relative motion between an observer and a three-
dimensional surface can be described as illustrated on
Fig. 1. A coordinate system (x,y,z) can be located at
the viewing point with the z-axis corresponding to the
viewing direction. If we assume that the main compo-
nents of ego-motion are a horizontal translation (Tx,
corresponding to lateral head-motion) and vertical rota-
tion (xy, corresponding to head rotation), then the
image velocities ( _u) projected on the image plane (u,v)
located at a distance f from the origin of the coordinate
axes can be described by the following equation (Lon-
guet-Higgins & Prazdny, 1980):

_u ¼ "T xf
z

" xyf " xy
u2

f
ð1Þ

If only a local portion of the visual field is considered,
then the horizontal (au) and vertical (av) visual angles
can be approximated by au % u

f and av % v
f . In this case

the above equation can be rewritten in terms of visual
angles by dividing the left and right sides by f. As a con-
sequence, the horizontal velocity ð _au ¼ _u

fÞ can be
approximated by

_au %
"T x

z
" xy ð2Þ

since a2u ¼ u2
f 2

1 is negligible. If the viewed surface is
smooth, it can be locally approximated by a planar
patch having the following equation:

z ¼ gxxþ gyy þ d ð3Þ

where gx and gy are the horizontal and vertical depth
gradients and d is the distance of the planar surface from
the origin of the coordinate axes (see Fig. 1, panel). If (3)
is substituted in (2), we obtain (see Appendix A):

_au % " T x

d
þ xy

! "

þ T x

d
ðgxau þ gyavÞ ð4Þ

Eq. (4) shows that, in general, motion parallax and
structure from motion (SfM) are both contributing to
the pattern of retinal velocities that results in a linear
velocity field. Following the traditional definitions of
these two dynamic sources of information, motion par-
allax is produced by pure observer translation (xy = 0)
and SfM by pure surface relative rotation. The second
case arises when the observer fixates the point of the sur-
face defined by the intersection of the planar patch and
the z-axis. In order to keep fixation on this point, the
vertical rotation must compensate the horizontal trans-
lation, i.e., xy ¼ " T x

d .
Usually the information provided by a linear velocity

field is described in terms of three parameters: the mean
translation component (Vu) and the horizontal (uu) and
vertical (uv) velocity gradients (Domini & Caudek, 1999;
Liter & Braunstein, 1998; Todd & Perotti, 1999). In fact,
Eq. (4) can be written as:

_au % V u þ uuau þ uvav ð5Þ

where V u ¼ " T x
d ¼ xy

# $

, uu ¼ T x
d gx and uv ¼ T x

d gy .
An important property of the linear velocity field is

the deformation (def), i.e., the intensity of the velocity
field gradient along the direction in which the velocity
variation is highest (Koenderink, 1986). It can be shown

that def ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2
u þ u2

v

p

.
It is important to note that the assumption of pure

observer translation (motion parallax) or pure surface
rotation (SfM) leads to two different interpretations of
the velocity field. In the motion parallax case, the veloc-
ity field completely specifies the 3D surface interpreta-
tion whereas, in the SfM case, the velocity field is
inherently ambiguous. In order to best clarify this point,
let us describe the surface orientation in terms of slant

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g2x þ g2y
q

& '

and tilt ðs ¼ gy
gx
Þ. For both the motion

parallax and SfM interpretations, tilt is specified (in a
specific instant of time) by the instantaneous velocity
field:

s ¼ uv

uu

¼
T x
d gx
T x
d gy

¼ gx
gy

ð6Þ

In the motion parallax case, since V u ¼ " T x
d and

def ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2
u þ u2

v

p

¼ T x
d r, slant r is specified by the ratio

j def
V u

j. In the SfM case, however, the slant of the surface
is not univocally specified by the velocity field. In fact,
since xy ¼ " T x

d , Vu = 0 and def = jxyrj. In this case,
the information provided by def is ambiguous, since
there are infinite combinations of slant (r) and angular
rotation (xy) that produce the same deformation (van
Veen & Werkkhoven, 1996).

1 Since the stimuli used in the experiments here reported are always
smaller than 8" of visual angle, this approximation is appropriate.
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Whereas several empirical investigations focused on
motion parallax (Braunstein & Tittle, 1988; Domini
et al., 1998; Gibson, Gibson, Smith, & Flock, 1959; Liter
& Braunstein, 1998), only recently pure SfM has been
studied (Domini et al., 1998). In a recent work, Domini
and Caudek (1999) proposed that the ambiguity of the
velocity field could be overcome by selecting, among
the infinite pairs of slant and angular velocities compat-
ible with a given def, the most likely one. In particular,
they have shown that, if the a priori distributions of
slant and angular velocity are uniform and limited, then
the posteriori probability distribution, p(xy,r/def), has a
maximum ðx'

y ; r
'Þ at x' ¼ kx

ffiffiffiffiffiffiffi

def
p

and r' ¼ 1
kx

ffiffiffiffiffiffiffi

def
p

(see Fig. 2, Vu0). Several empirical investigations sup-
port the hypothesis that the perceptual interpretation
of pure SfM does indeed conform to the analysis pro-
posed by Domini and Caudek (e.g., Todd & Perotti,
1999).

Pure motion parallax and pure SfM are the two ex-
tremes of a continuum in which these two ‘‘sources of
information’’ are combined. In fact, def and Vu do not
specify whether the relative motion between the observer
and the planar surface is due to a pure translation, or
whether some component of vertical rotation is involved
as well. If we define x = "xy as the amount of rotation
that compensates the observer translation, and if we as-
sume that this quantity ranges from 0 (pure translation)

to T x
d (pure rotation), then the equations that describe the

generic observer motion become:

Vu0=0
Vu1>0
Vu2>Vu1

ω

σ0 σmax

0

ωmax

Fig. 2. The three curves represent the loci of all r, x pairs that are
compatible with a given value of def and three different translational
components of the velocity field (Vu). The solid curve represents the
case studied by Domini and Caudek (1999) in which Vu = 0.

Fig. 1. Schematic representation of the relative motion between an observer and a three-dimensional surface. The coordinate system (x,y,z) has
origin at the viewpoint and the z-axis is the line of sight. The image plane is located at a distance f from the origin of the coordinate system. A 3D
point P(x,y,z) projects on the image plane a point (u,v). au and av indicate the horizontal and vertical visual angles subtended by P. The inset
represents a local planar patch at a distance d from the viewing point which orientation can be described in terms of the horizontal and vertical depth
gradients gx and gy.

M. Di Luca et al. / Vision Research 44 (2004) 3001–3013 3003



V u ¼ " T x

d
" x

! "

def ¼ T x

d
r

ð7Þ

If Tx and xy cannot be determined through vestibular
information provided by head and body motion, 2 then
the above equations are ambiguous, as in the case of a
pure SfM, since the ratio j def

V u
j does not specify a unique

value of slant (r). The mean translational component
Vu, however, provides additional information that is
not already contained in def. In fact, if the ratio T x

d is de-
rived from the first equation of (7) and it is substituted
in the second one, then def can be expressed as:

def ¼ rðj V u jþxÞ ð8Þ
As for the pure SfM case (Vu = 0), Eq. (8) shows that
infinite pairs (r,x) produce the same value of def. The
curve that specifies these infinite solutions, however,
shifts when the intensity of the mean translational com-
ponent is increased and def is kept constant, as shown in
Fig. 2 (Vu1 and Vu2). Since the increase of Vu shifts
downward the curve that represents the family of possi-
ble solutions of slant and angular velocity, the heuristic
proposed by Domini and Caudek (1999) derives smaller
r, x values as Vu increases and def is kept constant (see
Fig. 2). According to their proposal, therefore, perceived
slant and angular velocity should be inversely related to
the intensity of the translational component (jVuj).

It should be noted that this analysis applies only to
the first-order structure of the image motion, but not
to its second-order structure and that (a) the second-
order differential structure associated to surface shape
can be recovered independently of the first-order struc-
ture and entails a one-to-one mapping between the
image properties and the projected 3D shape (Lappin
& Craft, 2000); (b) previous studies as well as the present
one show that observers are not veridical in recovering
first-order structure properties associated with surface
slant, relative depth and angular velocity (e.g., Todd &
Perotti, 1999); (c) judgments of surface shape (second-
order structure) have been found to be more accurate
than judgments of first-order structure (e.g., Perotti,
Todd, Lappin, & Phillips, 1998).

3. Local vs. global

The computational formulation described in the pre-
vious section provides a good account of the empirical
data about the perception of local orientation in dy-

namic displays. Several studies, in fact, have shown that
surface slant is an increasing function of deformation
and a decreasing function of the translational compo-
nent Vu (Domini & Caudek, 1999; Liter & Braunstein,
1998; Todd & Perotti, 1999). In the following discussion,
however, we will show that this formulation is not suffi-
cient to explain global surface perception, since the heu-
ristic procedure outlined above does not derive local
orientation in a veridical fashion and, therefore, neces-
sarily leads to global inconsistencies.

We will now discuss the particular case in which the
optic-flow is produced by the projection of a planar sur-
face rotating about the vertical axis. 3 If the visual angle
subtended by the stimulus is not larger than 8" (as for
the displays of the present investigation), the projected
velocity field is approximately linear and can be de-
scribed by Eq. (5) (see Fig. 3). Domini and Caudek
(1999) investigated the perception of such a velocity field
with a translational component Vu = 0 (pure SfM) and
found that perceived slant is an increasing function of
the deformation.

Let us now consider two local regions of such an op-
tic-flow: a central and a peripheral region (see Fig. 3).
The central region is characterized by a null transla-
tional component (Vu = 0); the peripheral region, how-
ever, has the same value of def as the central region,

Fig. 3. Schematic representation of the instantaneous velocity field
produced by the orthographic projection a planar surface slanted in
depth and rotating about the vertical axis. The two apertures evidence
two areas respectively characterized by a nil and a positive transla-
tional component.

2 Even though some recent studies have shown that extra-retinal
information is used by the perceptual system to help the interpretation
of the optic-flow (Wexler, Lamouret, & Droulez, 2001), there is no
evidence so far that these parameters are used to derive a veridical
solution.

3 In the present context, the concept of ‘‘local’’ is defined with
reference to a planar surface since we restrict our analysis to the first-
order properties of the image. It is important to notice that also
second-order shape is locally defined.
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but a translational component Vu 5 0. According to the
model described above, when viewed in isolation, these
two regions should give rise to different perceived slants.
In particular, perceived slant should be bigger for the
central than for the peripheral region. This, however,
is at odds with the fact that a linear velocity field is usu-
ally perceived as a planar surface, implying that, for a
large velocity field, perceived slant must depend on some
grouping process linking spatially separated patches into
coherent global entities.

The grouping processes that integrate local patches
into a global surface require operations over an extended
area, but still, their goal can be regarded as achieving a
representation of surface orientation for each optic-flow
patch. Braddick and Qian (2001) proposed that the
representation of surfaces, rather than being indexed
by local spatial locations, must be indexed by objects––
perhaps the kind of representation that has been referred
to as an ‘‘object file’’ (Triesman, 1988). It is not clear
what role eye movements play in the emergence of global
surfaces from local patches. The fact remains, however,
that global surfaces have different properties than local
patches. The present research starts to investigate the ef-
fects of grouping on perceived surface orientation, when
a local optic-flow patch is presented in isolation or is
embedded in a larger optic-flow field.

The purpose of Experiment 1 was to establish
whether the computational formulation provided above
is sufficient to explain the perception of local surface ori-
entation in dynamic random-dot displays simulating a
rotating planar surface. The results show that this for-
mulation is indeed compatible with the observers! judg-
ments when local regions are presented in isolation.
When the same regions are embedded in a global op-
tic-flow, however, the observers! settings deviate from
the predictions of the heuristic proposed by Domini
and Caudek (1999). The difference between these two
conditions, therefore, provide evidence that the process-
ing of local surface orientation is affected by the pres-
ence of a surrounding flow field. In Experiment 2, we
asked whether grouping affects the perception of local
surface orientation only in the case of smoothly con-
nected optic-flow patches, or also for an un-structured
surrounding optic-flow. We found that the smoothness
of the velocity field is not a necessary condition for the
grouping effects observed in Experiment 1. In Experi-
ment 3, we extended the results of the first two experi-
ments to the case of curved surfaces.

4. General methods

4.1. Observers

All the observers were undergraduate students from
Brown University, Providence, and they were paid for

their participation. They were naive to the purpose of
the research and were not familiar with experiments
involving structure from motion displays. All had nor-
mal or corrected-to-normal vision.

4.2. Design

All the independent variables were studied within
observers. Each subject viewed a fixed number of trials
of each condition in one block, with the order of trials
completely randomized. The dependent variable was
the perceived orientation of the surface and was coded
in terms of slant and tilt.

4.3. Apparatus

The stimulus displays were presented on a Sony Trin-
itron 19

00
color monitor controlled via a HP Visualize

computer. The resolution of the monitor was
1280 · 1024 and the refresh rate was 60 Hz. The graphic
buffer used was 32 bits deep. The monitor was viewed
monocularly through a circular window from a distance
of 200 cm. The window limited the visible portion of the
monitor to a circular region of 28 cm in diameter (8" of
viewing angle).

4.4. Stimuli

The displays were composed of high-luminance anti-
aliased dots on a low-luminance background and simu-
lated either planar (Experiments 1–3) or curved
(Experiment 4) surfaces oscillating back and forth
around the vertical axis. 2000 dots were randomly posi-
tioned in a circular region of 28 cm in diameter. In order
to measure the perceived orientation of the surface we
superimposed an adjustable gauge figure on the ran-
dom-dot stimulus (as in Domini & Caudek, 1999,
Experiment 3; originally from Koenderink, Van Doorn,
& Kappers, 1992). This gauge figure was depicted as the
orthographic projection of a wire-frame hemisphere
composed of 12 meridians and four parallels. The hem-
isphere had a diameter of 30 arcmin of visual angle (see
Fig. 4).

4.5. Procedure

The observers were instructed to judge the local ori-
entation of the surface by adjusting the orientation of
the gauge figure through mouse movement. They were
told that the base of the hemisphere should be perceived
as parallel to the random-dot surface. When they were
satisfied with the orientation of the gauge figure, they
pressed the mouse button twice to initiate the next trial.
Viewing was monocular and a chin rest restricted head
motion. Eye movements were not restricted. The exper-
imental room was dark during the whole duration of the
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experiment. The responses were not timed and no
restriction was placed on the viewing time. A training
session always preceded the actual experiment, but none
of the conditions shown in the experiment were used. No
feedback was provided.

5. Experiment 1

The purpose of Experiment 1 was to determine
whether perceptual grouping affects the perception of lo-
cal surface orientation induced by dynamic random-dot
displays. We reasoned that, if perceived local slant is
influenced by the surrounding velocity field––not just
by the deformation and the intensity of the translational
component of the local optic-flow––then some form of
grouping must take place. In the two main experimental
conditions, observers were shown (1) local regions of a
larger velocity field in isolation (the surrounding optic-
flow was occluded), and (2) the whole velocity field
(see Fig. 4).

5.1. Method

5.1.1. Observers
Eleven Brown University undergraduates partici-

pated to the experiment.

5.1.2. Design
Two independent variables were studied in this exper-

iment: (1) the translational component Vu of the local
regions (0.00"/s and 3.61"/s), and (2) the viewing condi-
tion (local patch seen in isolation or as part of a global
velocity field).

5.1.3. Stimuli
In order to manipulate the average velocity of the lo-

cal patches, the observers judged different regions of the
global velocity field (see Fig. 4, left panel). The perceived
orientation of five local regions: a central region and
four peripheral regions was also measured (Fig. 4, right

panel). The central region was characterized by a null
translational component. All the peripheral regions
had a translational component of 3.61"/s. In different
blocks these regions could be either seen in isolation
(by using a 7 cm/2" circular aperture), or as part of
the whole velocity field (see Fig. 4). The local regions
shown through the circular aperture were 1" of visual
angle apart. The global velocity field was seen through
a circular window of 8" in diameter. The motion of
the dots was consistent with a linear constant velocity
field having a deformation of 0.76 s"1 and a tilt (the arc-
tangent of the ratio between the vertical and horizontal
velocity gradients) of either +45" or "45". Dot density
was kept constant during each stimulus sequence. One
oscillation cycle about the vertical axis took 1 s (60
frames). Each observer viewed four presentations of
the 20 conditions.

5.2. Results and discussion

Fig. 5 plots mean perceived slant as function of the
translational component of the local velocity field in
the two experimental conditions. For the partial-viewing
condition, the data are compatible with the qualitative
prediction of the model of Domini and Caudek (1999)
and with previous reports on slant perception (e.g.,
Todd & Perotti, 1999). When each optic-flow patch is
presented in isolation, perceived slant is a decreasing
function of the translational component of the optic-
flow. This trend is significantly reduced, however, when
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Fig. 5. Average judged slant in Experiment 1 as a function of Vu in the
global- and partial-viewing conditions. Vertical bars represent one
standard error. In the present and in the following figures, the standard
errors are defined on the between-observers variability.

Fig. 4. Schematic drawing of the experimental setting used in
Experiment 1. The vertical line represents the axis of rotation. The
wire-frame hemisphere represents the gauge figure used by the
observers to estimate local slant. Left panel: the whole surface is
visible through the mask. Right panel: the surface and the probe are
visible only through one of the apertures.
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the whole velocity field is visible. The different results
obtained in the local- and global-viewing conditions,
thus, indicate that the process linking spatially separated
patches into global entities does affect the perception of
local surface orientation.

A 2 (viewing condition: global vs. partial) · 2 (trans-
lational component: 0"/s and 3.61"/s) repeated-measure
analysis of variance (ANOVA) on perceived slant re-
vealed a main effect of viewing condition (F(1,10) =
6.06, p < 0.05) and a main effect of the translational
component (F(1,10) = 24.52, p < 0.01). The interaction
between the two independent variables was significant
(F(1,10) = 12.95, p < 0.01).

The variability of observers! judgments is reported in
Table 1 for each observer and each condition. Weber
fractions were computed by dividing the standard devi-
ations by the mean judged orientation for each stimulus
and each observer, ignoring the non-linearity of this
angular variable (see Fig. 6). A repeated measures AN-
OVA on these Weber fractions substantially replicated
the results of the previous analysis. A significant effect
was found for the translational component (F(1,10) =
37.367, p < 0.001); the main effect of viewing condition
was not significant (F(1,10) = 2.799, n.s.); the interaction
between the two independent variables was marginally
significant (F(1,10) = 4.474, p = 0.06).

Since in the present experiment eye movements were
not restricted, it would be possible to argue that observ-
ers might have always performed a local computation
around their fixation point. Under these conditions,
the increase in perceived slant in the global condition
(relative to that for peripheral stimuli presented in a
local region) could be due to observers fixating points
closer to the center of the global stimulus where the
net translational motion is decreased. We addressed this
issue by running an additional experiment, here not re-

ported. In this control experiment, observers were in-
structed to maintain fixation to the center of the
display, while adjusting the gauge figure in the periph-
ery. This task was very difficult to perform, as indicated
by the enormous variability of the observers! settings.
Since in Experiment 1, conversely, the variances of the
observers! settings did not significantly differ between
the global and partial viewing conditions (the variance
was actually slightly smaller in the global condition), a
possible explanation of the results of Experiment 1 in
terms of eye movements can be ruled out.

6. Experiment 2

The results of the previous experiment reveal an effect
of the global flow on the perception of local slant in dy-
namic random-dot displays. We should note, however,
that in the previous experiment: (1) the local patches
were part of a smoothly connected surface, and (2) all
local patches shared the same horizontal and vertical
gradients. The purpose of Experiment 2 was to establish
whether the smoothness and linearity of the optic-flow
are necessary conditions for attributing different percep-
tual interpretations to local patches presented in isola-
tion or embedded in a larger flow field.

The stimulus displays used in Experiment 2 were dif-
ferent from those used in the previous experiment in two
respects. First, the contours of the local patches were
visible. It may be argued, in fact, that the effect of
the translational component may vanish if additional

Table 1
Standard deviations defined on the within-observer variability for all
observers in each condition of Experiment 1

Subject Global Partial

0.00 3.61 0.00 3.61

1 7.64 9.27 7.32 14.47
2 4.15 9.80 2.38 5.85
3 3.75 12.10 7.17 14.06
4 8.11 14.55 7.58 10.28
5 3.63 6.57 4.14 7.91
6 2.72 6.17 6.66 11.68
7 3.20 8.89 6.21 11.82
8 7.74 11.23 8.87 18.84
9 9.17 5.31 2.98 4.95
10 6.58 9.01 6.36 8.85
11 7.05 11.11 5.59 6.63

RMS average 5.79 9.46 5.93 10.49

Translational component Vu: 0.00"/s vs. 3.61"/s, and global vs. partial
viewing conditions.
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Fig. 6. Weber fractions as a function of Vu in the global- and partial-
viewing conditions of Experiment 1. Vertical bars represent one
standard error.
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dynamic information (such as contour deformation) is
available (Fig. 7, top row). Second, the global optic-flow
simulated the projection of a rotating planar surface
whose point positions were randomly perturbed along
the z-axis (Fig. 7, central row). This display was per-
ceived as a 3D volume of randomly distributed dots
containing a small planar region. If the grouping
effects observed in the previous experiment occur only
when local patches are part of a global linear velocity
field, then the same slant should be perceived when a lo-
cal patch is viewed in isolation or as a part of such a 3D
volume.

6.1. Method

6.1.1. Observers
Six observers participated to the experiment.

6.1.2. Design
Two independent variables were examined in this

experiment: (1) the translational component Vu of the
local patches (0.00"/s, 0.96"/s, 1.93"/s, 2.89"/s, 3.86"/s)

and (2) the viewing condition (local patch embedded
in a linear velocity field, local patch embedded in a 3D
volume, local patch seen in isolation).

6.1.3. Stimuli
The displays corresponding to the three viewing con-

ditions are schematically represented in Fig. 7. The glo-
bal linear velocity field was identical to the velocity field
generated in the previous experiment (def = 0.76 s"1).
The random volume condition was generated by per-
turbing the velocities of the linear velocity field with uni-
form random distribution with mean 0.00"/s and spread
±1.24"/s. A portion of the velocity field was left unper-
turbed. This portion corresponded to a circular area
on the 3D surface that projected an ellipsoidal contour
on the image plane. The observers judged the perceived
slant of this region. The local patch seen in isolation was
identical to the local patch embedded in the random vol-
ume. The translational component of the local velocity
field was manipulated as in the first experiment by show-
ing different regions of the global velocity field. The local
regions were selected along a direction orthogonal to
the tilt of the optic-flow from the stimulus center to
the stimulus periphery such that their average veloci-
ties were 0.00"/s, 0.96"/s, 1.93"/s, 2.89"/s, 3.86"/s respec-
tively. Each subject viewed eight presentations of the
15 conditions.

6.2. Results and discussion

Fig. 8 plots mean perceived slant as function of the
translational component of the local velocity field in
the three experimental conditions. The data show that
(1) for local optic-flow patches seen in isolation, per-
ceived slant is a decreasing function of the translational
component Vu (even if deforming-contours information
is available), (2) perceived slant is not affected by
the translational component Vu when the patches are
embedded in a linear velocity field (linear global-viewing
condition), and (3) there is no difference between the lin-
ear and the noisy global-viewing conditions. Even
though in the noisy global-viewing condition the sur-
rounding velocity field is perceived as a volume of
randomly distributed dots, the perception of local
patches is still affected by the ‘‘perturbed’’ global field.
These data indicate, therefore, that the smoothness of
the velocity field is not a necessary condition for
assigning a different perceptual interpretation to a
local patch viewed in isolation or as part of a larger flow
field.

A 3 (local-viewing, noisy global-viewing and linear
global-viewing conditions) · 5 (translational component:
0.00"/s, 0.96"/s, 1.93"/s, 2.89"/s, 3.86"/s) repeated-meas-
ures analysis of variance on perceived slant (ANOVA)
revealed a main effect of viewing condition (F(2,10) =
11.58, p < 0.01) and a main effect of the translational

Fig. 7. Schematic representation of the stimuli used in the three
viewing condition of Experiment 2. Top: patch in isolation with
deforming contours; middle: local patch embedded in a 3D volume;
bottom: patch embedded in a linear velocity field. Left figures: the
stimulus displays are schematically represented as if viewed from the
side. Right figures: a schematic 3D representation of the stimulus
displays. The top row represents the local-viewing condition; the
middle row represents the noisy global-viewing condition; the bottom
row represents the linear global-viewing condition.
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component (F(4,20) = 3.98, p < 0.05). The interaction be-
tween the two independent variables was also significant
(F(8,40) = 8.08, p < 0.01).

The variability of observers! judgments is reported in
Table 2 for each observer and each condition. As for
Experiment 1, the Weber fractions were computed
for each stimulus and each observer (see Fig. 9). Also
in this case, a repeated-measures ANOVA on these We-
ber fractions replicated the results of the previous anal-
ysis. A significant effect was found for the viewing
condition (F(2,10) = 4.771, p < 0.05); the main effect
of the translational component was not significant
(F(1,5) = 2.791, n.s.); the interaction between the two
independent variables was significant (F(2,64) = 8.149,
p < 0.001).

7. Experiment 3

The previous experiments reveal an effect of the sur-
rounding optic-flow on the perceptual interpretation of
local surface orientation in dynamic random-dot dis-
plays. Whereas perceived slant for an optic-flow patch
viewed in isolation was affected by the translational
velocity component of the optic-flow, this effect was re-
duced or vanished when the same patch was viewed as
a part of a larger linear-velocity field, or a randomly
perturbed linear-velocity field.

A parsimonious way of explaining these results is to
hypothesize that the visual system estimates the average
slant of the global optic-flow and assigns this value to each
local patch of the velocity field. In both the previous
experiments, in fact, the overall translational component
of the global optic-flow was equal to zero and, thus, the
average slant of the whole velocity field could be derived
by using the heuristic model proposed by Domini and

Table 2
Standard deviations defined on the within-observer variability for all observers in each condition of Experiment 2

Subject Linear local Noisy global Linear global

0.00 0.96 1.92 2.88 3.84 0.00 0.96 1.92 2.88 3.84 0.00 0.96 1.92 2.88 3.84

1 7.75 10.06 8.97 12.57 10.6 11.84 4.69 8.12 5.99 6.21 6.92 5.95 12.93 6.00 12.71
2 2.85 4.74 6.67 8.35 8.70 2.67 3.52 3.30 2.99 2.41 5.17 3.60 3.17 3.51 3.67
3 5.73 4.24 7.58 8.44 8.97 2.63 5.59 4.39 4.17 2.51 3.88 3.68 4.59 4.71 3.12
4 5.11 4.23 6.07 4.72 3.36 5.85 4.37 4.99 5.49 4.82 2.32 3.11 6.30 4.64 4.22
5 8.07 6.12 7.81 4.98 5.65 9.89 3.92 6.85 7.50 5.65 6.89 6.59 4.64 5.99 3.99
6 4.77 4.60 7.41 6.45 5.24 2.17 4.53 7.08 4.59 5.46 4.78 7.57 6.77 10.96 9.49

RMS
average

5.71 5.67 7.42 7.59 7.09 5.84 4.44 5.79 5.12 4.51 4.99 5.08 6.40 5.97 6.20

Translational component Vu: 0.0"/s, 0.96"/s, 1.92"/s, 2.88"/s, 3.84"/s; viewing conditions: linear local, noisy global, linear global.
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Fig. 9. Weber fractions as a function of Vu in the local-viewing, noisy
global-viewing and linear global-viewing conditions of Experiment 2.
Vertical bars represent one standard error.
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Caudek (1999). This hypothesis would explain why the
perceived slant of all local patches in the ‘‘global flow’’
condition is equal to the perceived slant of the central
patch (Vu = 0) in the ‘‘partial viewing’’ condition (see
Fig. 8).

The previous explanation, however, does not apply to
the case of a smoothly curved surface since, in that case,
the local regions of the surface are always perceived as
having different orientations. One could speculate,
therefore, that a planar surface (or a randomly-per-
turbed planar surface) is a special case that is not repre-
sentative of more generic stimulus conditions. In
Experiment 3, therefore, we investigated the effects of
grouping in the case of a non-linear velocity field. In this
experiment, we generated SfM displays that simulated
the orthographic projection of a random-dot hemi-
sphere oscillating about the y-axis. In two conditions,
the axis of rotation was either in front or behind the
base of the hemisphere (see Fig. 10); two non-linear
velocity fields were therefore created, having similar
deformations, but different local velocities.

7.1. Method

7.1.1. Observers
Six naive observers participated in this experiment.

7.1.2. Design
Three independent variables were examined: (1) The

position of the axis of rotation (in front vs. behind),
(2) the viewing condition (local patch embedded in a
global velocity field vs. local patch seen in isolation),
and (3) the translational component Vu of the local
patches (0.00"/s, 1.15"/s, 2.00"/s corresponding to three
different radial positions).

7.1.3. Stimuli
The motion of the dots simulated the orthographic

projection of a hemisphere oscillating about a vertical

axis. The axis of rotation could be either in front (0.98
times the ray of the sphere from its center) or behind
(0.64 times the ray of the sphere from its center). The
manipulation of the axis of rotation served the purpose
of changing the translational component of the local
patches. Fig. 11 shows how different radial positions
of the patches correspond to different translational com-
ponents. If the axis of rotation is in front (open squares
on Fig. 11), the translational component increases from
the center to the periphery. If the axis of rotation is be-
hind (open circles on Fig. 11), the translational compo-
nent decreases from the center to the periphery. It is
important to note that the translational components of
the patches in the central radial locations do not depend
on the position of the axis of rotation. The average value
of def for the local patches was 0.18, 0.47, 0.62 s"1 for
the three different radial positions, respectively. Each
observer viewed eight presentations of the 36 stimulus
conditions.

Fig. 10. Schematic representation of the stimuli used in Experiment 3.
Left panel: axis in front. Right panel: axis behind. In the actual
experiment, the stimuli were random-dot displays simulated as
oscillating about the vertical axis of rotation.

Fig. 11. Top: image positions of the local optic-flow patches in
Experiment 3. Bottom: the relationship between the radial position of
the patches and the translational component of the velocity field.
Dashed lines and squares: axis-behind; continuous line and circles: axis-
in-front.
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7.2. Results and discussion

Fig. 12 plots mean perceived slant as function of the
radial position in the four experimental conditions. The
data show that, also for a non-linear velocity field,
the observers! settings in the global-viewing condition
differ from those in the partial-viewing condition. For
the patches viewed in isolation (open squares and cir-
cles), the qualitative trend of the data is consistent with
the heuristic proposed by Domini and Caudek (1999).
According to this heuristic, perceived slant depends on
the deformation and on the translational component
of the local optic-flow. Hence, the function relating per-
ceived local slant to the radial position of the local patch
should have opposite slope-signs in the two axes-condi-
tions. The translational component of the local optic-
flow, in fact, is an increasing function of radial position
if the axis of rotation is in front, and a decreasing func-
tion of radial position if the axis of rotation is behind. In
both conditions, however, the deformation of the local
patches is identical and, thus, we should expect that per-
ceived slant increases with radial position (circles) when
the axis is behind (since def increases and the transla-
tional component decreases) and increase less or de-
crease (squares) when the axis is in front (since both
def and the translational component increase). The data
for the partial-viewing condition clearly show this inter-
action (see Fig. 12). In the global-viewing condition, on
the other hand, perceived slant always increases with ra-
dial position, independently of whether the axis of rota-
tion is in front or behind (since def increases with radial position). The different qualitative trends of the data for

the global and partial conditions cannot be explained by
the local properties of the optic-flow (identical in both
conditions) and, therefore, must be attributed to the
processes linking spatially separated patches into global
entities. 4

A 2 (axis of rotation) · 2 (viewing condition: global
and partial) · 3 (radial position: inner, central and
peripheral) repeated-measures ANOVA revealed a main
effect of radial position (F(2,10) = 43.49, p < 0.01). The
following two-way interactions were significant: radial
position and viewing condition (F(2,10) = 43.13, p <
0.01), radial position and axis of rotation (F(2,10) =
9.72, p < 0.01), viewing condition and axis of rota-
tion (F(1,5) = 8.50, p < 0.05). The three-way interac-
tion between radial position, viewing condition and
axis of rotation was also significant (F(2,10) = 4.60,
p < 0.05).

Fig. 13 plots the average slant judgments on the con-
straint lines representing the three def magnitudes simu-
lated in the present experiment. The figure shows that
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Fig. 12. Average judged slant as a function of the radial position in the
four experimental conditions of Experiment 3. Vertical bars represent
one standard error.
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Fig. 13. Average judged slant as a function of angular rotation plotted
on the constraint lines defined by simulated def in the global and
partial viewing conditions of Experiment 3. Bars represent one
standard error. The three hyperbolas represent the loci of the r, x
pairs compatible with the def magnitudes used in the experiment. Each
data point is identified by the r coordinate on the def constraint line.
Domini and Caudek (1999) demonstrated that, for def magnitudes
comparable to those used in the present experiment, the observers!
settings for perceived orientation (r) and angular rotation (x)
magnitudes are very consistent.

4 In an analysis here not reported, we found that the perceived 3D
shapes inferred from the observers! settings in the partial- and global-
viewing conditions were consistent with different magnitudes of affine
stretching of the simulated 3D shape (see Perotti et al., 1998).
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the slant judgments in the partial viewing condition are
associated to a larger range of angular-rotation magni-
tudes than in the global viewing condition. This conclu-
sion (even if it is inferred from perceived slant only)
provides further supports to the hypothesis that the dif-
ference between the partial and global viewing condi-
tions is due to a process of spatial integration. As it
should be expected for a rigid surface rotation, in fact,
similar angular-rotation magnitudes tend to be associ-
ated to different optic-flow patches in the global-viewing
condition (but not necessarily in the partial-viewing
condition).

8. General discussion

In three experiments we showed that the perception
of surface orientation in structure from motion cannot
be explained by a purely local analysis of the optic-flow.
In Experiment 1, observers judged the perceived slant of
local optic-flow patches. In two conditions, these
patches were seen either in isolation, or as part of the
global optic-flow. Despite the fact that local information
was the same, perceived slant was judged differently in
the two conditions. When the optic-flow patches were
viewed in isolation through a circular window, their per-
ceived slant was a decreasing function of the transla-
tional component of the local optic-flow; when the
whole global flow was visible, perceived slant was still
affected by the translational component of the local op-
tic-flow, but by a smaller degree. The difference in the
partial vs. global viewing conditions thus provides evi-
dence that local optic-flow processing is influenced by
the surrounding flow field.

Experiment 2 revealed that the grouping effects found
in Experiment 1 do not necessitate the linearity or the
smoothness of the global velocity field. Similar magni-
tudes of slant, in fact, were reported for optic-flow
patches embedded in a smooth velocity field or in a ran-
domly perturbed linear velocity field. This result is sur-
prising since the perturbed velocity field appeared like
a cloud of random-dots––not a planar surface––and,
in these circumstances, one may expect that spatial inte-
gration does not occur. 5

By using the projection of an oscillating random-dot
sphere, in Experiment 3 we investigate a more general
stimulus condition than in the first two experiments.
Also in these circumstances, however, observers re-
ported different magnitudes of perceived slant when
the same local regions were viewed in isolation, or as
parts of the global optic-flow.

There are two main theoretical implications of these
results. (1) The perceptual processes deriving 3D proper-
ties from dynamic information cannot be accounted for
by a purely local analysis of the optic-flow (e.g., Domini
& Caudek, 1999; Todd & Perotti, 1999). Local-slant
judgments, in fact, are affected by the surrounding op-
tic-flow. (2) The perception of a smooth surface is not
a necessary condition for spatial integration, as indi-
cated by the results of Experiment 2 where the surround-
ing optic-flow was produced by the rigid motion of a
cloud of dots.

It remains a goal for future research to understand
the perceptual mechanisms that govern spatial integra-
tion. This is an especially difficult task, since human
structure-from-motion only makes use of ambiguous
information of the first temporal order and, therefore,
(in general) does not derive a veridical 3D structure
from a moving image. It could be speculated, however,
that the local (first-order) analyses of contiguous optic-
flow patches may mutually constrain each other. A local
rigidity constraint, for example, could bias towards sim-
ilar values the perceived rotation of neighboring
patches. The global shape may then result from these lo-
cal interactions, without the guarantee of being veridi-
cal. An alternative interpretation is that perceived
surface structure may depend on the second-order image
properties (Lappin & Craft, 2000). The hypothesis that
perceived local orientation is affected by the global con-
text, in fact, is not inconsistent with the view that global
shape is accurately perceived up to an affine transforma-
tion of the image.

The above considerations can be related to our previ-
ous research on temporal integration in SfM (Domini,
Vuong, & Caudek, 2002). In that investigation, observ-
ers were shown two optic-flow sequences presented side
by side. Each sequence was made up of two successive
segments, the history and the comparison. The velocity
gradients (/x1 > /x2) used for the comparison segments
were such that, when shown alone, observers reliably
associated (in at least the 80% of the cases) the larger
perceived slant to the velocity field having the largest
gradient (/x1). When /x1 was preceded in the history
segment by a very small velocity gradient, and /x2 was
preceded by a very large velocity gradient, however,
the opposite result was found: Observers consistently
judged the velocity field with the smallest gradient
(/x2) in the comparison phase as having the largest per-
ceived slant. Domini et al. explained these findings by
means of a temporal-integration model assuming that

5 In Experiments 1 and 2, the deformation component of the
velocity field was not manipulated since we already demonstrated that,
within stimulus conditions similar to those of the present experimental
setting, perceived slant magnitudes are unrelated to the slant magn-
itudes that, in principle, can be derived from the second-order
properties of the velocity field (Domini, Caudek, & Proffitt, 1997).
While in our previous research we demonstrated that judgments of
surface orientation depend primarily on the first-order properties of
the optic-flow, the aim of the present investigation was to investigate
the influence of the surrounding field on the judgments of local surface
orientation.
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(1) a 3D representation is derived heuristically from the
first-order velocity field, and (2) perceived local surface
orientation is updated over time by averaging the slant
magnitudes specified by the current optic-flow, on the
one hand, with the slant and angular rotation magni-
tudes perceived in previous moments of time, on the
other. With reference to this previous analysis, a similar
mechanism might be postulated for spatial integration,
the only difference being that the dimension along which
integration occurs is space rather than time.

Appendix A

To derive Eq. (4) from Eqs. (2) and (3) it should be
noted that the relationship between the screen coordi-
nates (u,v) in terms of visual angles (au % u

f , av % v
f )

and the 3D coordinates of a point P (x,y,z) is given by

au %
u
f
¼ x

z

av %
u
f
¼ y

z

ðA:1Þ

If we substitute these in the equation of the planar sur-
face (Eq. (3)), we obtain:

z ¼ gxauzþ gyavzþ d ðA:2Þ

From Eq. (A.2) we can derive z and substitute it in the
equation of the velocity field (Eq. (2)). This substitution
leads to Eq. (4).
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