Defense mechanisms development in typical children

Article in Psychotherapy Research · September 2010
DOI: 10.1080/10503307.2010.493536 · Source: PubMed

CITATIONS
0

READS
58

2 authors:

maria anna Tallandini
Università degli Studi di Trieste
17 PUBLICATIONS 160 CITATIONS

Corrado Caudek
University of Florence
90 PUBLICATIONS 655 CITATIONS

All in-text references underlined in blue are linked to publications on ResearchGate, letting you access and read them immediately.
Defense mechanisms development in typical children

Maria Anna Tallandini & Corrado Caudek

To cite this article: Maria Anna Tallandini & Corrado Caudek (2010) Defense mechanisms development in typical children, Psychotherapy Research, 20:5, 535-545, DOI: 10.1080/10503307.2010.493536

To link to this article: http://dx.doi.org/10.1080/10503307.2010.493536

Published online: 27 Jul 2010.

Submit your article to this journal

Article views: 418

View related articles
Defense mechanisms development in typical children

MARIA ANNA TALLANDINI¹ & CORRADO CAUDEK²

¹Department of Psychology, University of Trieste, Trieste, and Department of Psychology, University College London, London & ²Department of Psychology, University of Florence, Florence, Italy

(Received 6 April 2009; revised 29 March 2010; accepted 7 May 2010)

Abstract

The defense mechanisms (DMs) of 103 nonreferred children ages 47 to 102 months were assessed through dollhouse play. The authors measured the children's temperament (Temperament Assessment Battery for Children [TABC]) and verbal capacities (Wechsler Preschool and Primary Scale of Intelligence or Wechsler Intelligence Scale for Children). Four main findings were derived: (1) DM use decreased with age with different developmental trajectories; (2) regression, displacement, and reaction formation were more frequent in girls and denial more frequent in boys; (3) the number of DMs used was negatively associated with the TABC Adaptability score and positively with the TABC Approach/Withdrawal score; and (4) children who used rationalization and did not use identification and suppression scored better on verbal capacities.

Keywords: childhood; defense mechanisms; temperament; verbal intelligence

Defense mechanisms (DMs) have been considered as strategies—adaptive or maladaptive—that children and adults use to deal with the emotional difficulties of everyday life (Cooper, 1998; A. Freud, 1936/1965; S. Freud, 1926/1959; Hentschel, Smith, Draguns, & Ehlers, 2004; Laor, Wolmer, & Cicchetti, 2001). Much of the empirical research primarily focuses on DMs among adult and adolescent populations (Feldman, Araujo, & Steiner, 1996; Conte, Plutchick, & Draguns, 2004), even though DMs in early childhood have also been studied (e.g., Araujo, Medic, Yasnovsky, & Steiner, 2006; Cramer, 1997; Cramer & Block, 1998; Wolmer, Laor, & Cicchetti, 2001). The aim of the present investigation was to study the development of DMs in children ages 47 to 102 months. Information gained from an assessment of DMs, in fact, may prove to be useful in developing a more effective therapeutic relationship (Despland, de Roten, Despars, Stigler, & Perry, 2001).

Initially, defenses were seen as countercathexes serving to diminish anxiety produced by conflictual contents of the mind and were linked to pathological aspects of human functioning (S. Freud, 1894/1962). Later, Sigmund Freud argued that DMs are useful mental mechanisms that allow individuals to cope with internal conflicts: They maintain the unconscious status of forbidden impulses and, therefore, mitigate or avoid anxiety (S. Freud, 1923/1961, 1926/1959). Anna Freud (1936/1965) believed that DMs emerge at different moments of normal development during childhood with different intensity, depending on the psychological stage of development and the psychological context. She considered denial and projection as “normal” in early childhood but as indicators of possible pathology later on. Repression and sublimation were expected to emerge relatively late in the developmental process. Other DMs such as “regression, reversal or turning round the self are probably independent of the stage that the psychic structure has reached” (A. Freud, 1936/1965, p. 56). Moreover, Anna Freud posited that DMs are influenced by libidinal stages and intellectual capacity. Denial and regression, for instance, require very little intellectual contribution, whereas rationalization requires more complex intellectual skills. Overall, Anna Freud’s position was that DMs emerge at different ages with different intensity, depending on the psychological stage of development and the psychological context.

Studying the developmental aspects of DMs, Cramer (1996) highlighted the confusion that exists in the description and classification of defenses.
Different authors use different classification principles, and no general, common taxonomy of DMs had yet been proposed (Hauser & Safyer, 1995; Vaillant, 1992). The classifications and definitions of the Diagnostic and Statistical Manual of Mental Disorders (fourth edition, text revision [DSM-IV-TR]; American Psychiatric Association, 2000), therefore, represent a useful tool for research on this topic. In the present research, the term defense mechanism refers to “an automatic psychological process that protects the individual against anxiety and from awareness of internal or external stressors or dangers. Defense mechanisms mediate the individual’s reaction to emotional conflicts and to external stressors” (American Psychiatric Association, 2000, p. 821). DMs are thought to operate unconsciously but have observable manifestations within an individual’s behavior (A. Freud, 1936/1965; S. Freud, 1926/1959). The individual can be aware of the presence of DMs in his or her behavior but unaware of the purposes, drives, and affects underlying them. DMs have often been studied in the adult population, but little research has been conducted on children (e.g., Bond, Gardner, Christian, & Sigal, 1983; Haan, 1963; Perry & Cooper, 1989; Sammallahiti & Aalberg, 1995). Among these investigations is the work of Smith and Danielsson (1982). Using the meta-contrast technique to produce anxiety reactions and defense strategies, they found that anxious children show denial and passive surrender. Laor et al. (2001) developed the comprehensive assessment of defense style method to evaluate child and adolescent defensive behavior. Such a method, however, relies exclusively on parental reports and is not framed within a developmental perspective. Cramer (1991) conducted several studies in normal children and adolescents on three DMs: denial, projection, and identification. Similarly to A. Freud (1936/1965), Cramer found that these DMs have different developmental courses: Denial is the earliest to appear; the precursors of projection develop into proper projection as a result of cognitive development; and the precursor of identification is present in early infancy and re-intensifies during adolescence.

In this investigation, we examined the development of 12 DMs in normal children ranging in age from 47 to 102 months. Within this time frame, from a psychoanalytic perspective, children develop from the preoedipal phase, through the oedipal complex, to the beginning of the latency period (e.g., A. Freud, 1936/1965). Moreover, from the cognitive perspective, the intellectual functions undergo significant reorganization as a result of the acquisition of a wider range of cognitive tools (Fischer, Shaver, & Carnochan, 1990; Keil, 1989; Sloutsky, Lo, & Fisher, 2001).

It is easy to recognize that the research methods appropriate for adults are of little use when studying DMs in children. To address this problem, we studied the presence of DMs in an almost natural setting by evaluating children’s overt behavior in dollhouse play (DHP; see also Emde, Wolf, & Oppenheim, 2003). Given that DMs are activated by the presence of emotionally salient individuals (parents and siblings among others), we hypothesized that the expression of DMs would be induced by the request to reproduce scenes involving the children’s own family. In fact, at the earliest age we consider (47 months), children’s cognitive functioning at a symbolic level is well established (Lichtenberg, 1983).

Regarding the development of DMs, we hypothesized that the likelihood of children’s use of denial decreases with age (Cramer & Gaul, 1988; A. Freud, 1936/1965; Glasberg & Aboud, 1982; Hill & Sarason, 1966; Smith & Danielsson, 1982) and that the likelihood of their use of rationalization and idealization increases with age (Cramer, 1991; Schimek, 1968). Regarding gender, we hypothesized that boys tend to use a larger number of DMs than girls (Brody, Rosek, & Muten, 1985), that boys tend to use denial more often than girls, and that girls tend to use regression more often than boys (Feldman et al., 1996). No specific prediction was made for other DMs (see Laor et al., 2001).

Consistent with A. Freud’s claim that excessive use of DMs can be interpreted as difficulty in dealing with reality, we hypothesized that children using a large number of DMs also show temperamental difficulties (Cramer, 1991; A. Freud, 1936/1965; Vaillant, 1992; Wallerstein, 1985; Martin, 1998).

Finally, we expected an association between verbal intellectual capacity and rationalization, as found in adult samples by Schimek (1968), Haan (1974), and Hentschel, Kiessling, Teubner-Berg, and Dreier (2004).

Method

Participants

The sample was composed of 103 children enrolled in different kindergartens or schools. They ranged in age from 47 to 102 months (mean, 73.98 ± 1.841 SE). To analyze the development of DMs and its possible nonlinear trend, children were separated into three groups based on age. The youngest group (47–55 months) comprised 27 children who were at the stage of intuitive thinking and dealing with the precursors of the oedipal stage (mean age, 49.5 months ± 0.924...
The intermediate group (60–72 months) comprised 37 children in the oedipal phase who had not obtained the notion of conservation (mean age, 65 months ± 0.74 SE). The older group (90–102 months) comprised 39 children who acquired operational thinking and whose emotional and social development reached an equilibrium in the latency phase (mean age, 96 months ± 0.624 SE).

Because DHP must be presented in a homogeneous way, with identical instructions to all participants, only first-born children from two-parent families were included in the study. This selection choice was made so as to reduce the number of variables affecting the expression of DMs (see also Dunn & Kendrick, 1982). All children came from families with an average to high socioeconomic status, with at least one parent having obtained an upper level secondary degree. Data of six children from the initial sample were removed because of technical problems.

The data were collected by four assistants who were blind to the hypotheses of the study and received no psychoanalytic training. All interviews were conducted in accordance with the ethical requirements proposed by the Society for Research in Children. All queried families provided written consent for their child to take part in the study.

Procedure

Children were examined individually in two separate sessions 3 to 6 days apart. In the first session, half of the children engaged in the DHP task and the remaining children were administered the Verbal subtest of one of two Wechsler scales: the Wechsler Preschool and Primary Scale of Intelligence, Revised (WPPSI; Wechsler, 1989) for the youngest group of children or the Wechsler Intelligence Scale for Children, Revised (WISC-R; Wechsler, 2003) for the two older groups. Each participant was examined in a specifically organized room. The Temperament Assessment Battery for Children–Teacher’s Form (TABC) was individually administered to teachers.

The DHP task was used in a semistructured manner to investigate the presence and development of DMs. A pilot study was conducted with nine participants (three from each age group). Careful analyses of the recorded play of this preliminary investigation were used to precisely define the procedure used in the main study. We implemented the DHP by using a two-storey furnished dollhouse, placed on a table to allow children easy access. To evoke emotional content, children were asked to pretend that the house and the dolls represented their own house and their own family (McHale, Neugebauer, Radin, & Schwartz, 1999; Minnis et al., 2006). The experimental situation was subdivided into a fixed sequence of four typical family life episodes: (1) mealtime, (2) bedtime, (3) a sad (bad) time, and (4) a happy time (see McHale et al., 1999). The mealtime episode could elicit conflicts concerning food and table manners, the bedtime episode could favor regression, a sad time could induce a wish to cancel out or deny a bad event, and a happy time could provide a reason for idealization. The happy time episode was always placed at the end of the sequence in order to restore the child’s emotional state. Similar to the MacArthur Story Stem Battery (Emde et al., 2003), this method allows the free expression of narratives as the children play with the dollhouse. We were interested in how children described these events, irrespective of their historical accuracy, presupposing that the narrative concerning the four episodes would be informative about the children’s psychological reactions.

The four assistants were unaware of the children’s family situations (with the exception of the number of children in the family). To stimulate and contain play without interfering with the children’s spontaneous production, we implemented the mirroring technique (i.e., immediate reformulation of participants’ expressions; Lumbelli, 1994). By being asked two alternative questions such as “Do you go to sleep by yourself or is there somebody who tucks you in?”, children were encouraged to expand on any theme that they had spontaneously produced. The assistants learned the general protocol during the pilot study. Training was conducted by Maria Anna Tallandini, a trained, experienced psychoanalyst and expert developmental psychologist.

Each child was presented with a box containing six dolls: two representing the parents, two representing the grandparents, one representing the child by gender, and eventually, an infant doll representing a younger sibling. The assistant initiated the DHP by first saying “Let’s pretend that this is your house” and then “Let’s pretend that these dolls are your family.” Subsequently, the experimenter provided clear instructions in order to differentiate the four episodes. After the fourth episode, the experimenter indicated the end of play by saying, “We have run out of time for playing together with the dollhouse. Thank you.”

The DHP was recorded by a video camera positioned in front of the dollhouse at an average distance of 3.5 meters. In the majority of cases, children expressed very limited curiosity about the camera and appeared completely absorbed in the play. We allotted approximately 20 min for each DHP session, which comprised all four episodes.
Coding system. To code the recordings of children’s pretend play, we created an initial list of DMs based on the taxonomy of the DSM-IV-TR (American Psychiatric Association, 2000), further integrated by the children’s DM exemplifications from A. Freud (1936/1965), Sandler and Freud (1985), Cramer (1996), and Wolmer et al. (2001). Projection was not considered because the DHP called for children “to pretend” about dolls, thus masking other projection instances.

Twenty randomly selected tapes (20% of the entire sample) were carefully transcribed: six for the first group and seven each for the second and third groups (see Oppenheim, Emde, & Warren, 1997). Transcriptions included all verbal utterances and a complete record of nonverbal behavior, such as motor behavior, sounds, and gestures made while children were speaking and commenting on a given person (e.g., shoulder shrugging or making negative mouth noises). To transcribe the tapes, the scorers completed a form comprising five entries: time of the event, child’s verbal utterances, experimenter’s verbal utterances, child’s motor behavior, and child’s expressive behavior.

Through a careful study of the video recordings and the protocol transcriptions, two raters (Maria Anna Tallandini and a researcher with no psychoanalytic training) identified a total of 12 DMs: acting out, denial, displacement, idealization, identification, passive aggression, rationalization, reaction formation, regression, repression, suppression, and undoing. The scoring of the complete set of video recordings was based on this DM list (see Appendix A).

Scoring procedure. Two raters scored the entire set of 36 video recordings. One of the raters had not participated in the previous phase, but received thorough training prior to scoring. In a first phase, a random selection of the video recordings (20%) was scored separately by the two raters. In this phase, the raters reviewed their scoring whenever interrater reliability did not reach criterion (Cohen’s κ > 0.80) and until consensus was reached. A third rater was consulted when disagreement could not be resolved, which occurred six times overall. After this “calibration” phase, each rater evaluated half of the remaining video recordings. The global kappa was .85 and ranged from .76 to .96.

Results

DMs Presence as a Function of Age and Gender

Figure I shows the proportion of children manifesting each DM in at least one episode of pretend play as function of age and gender. Generalized linear mixed-effects (lme) models with crossed random effects for participants and episodes were used to analyze binary presence/absence of each DM (see Baayen, Davidson, & Bates, 2008; Bates & Sarkar, 2007). The dependent variable was scored as 1 if the DM appeared in at least one episode of pretend play and 0 otherwise.

The lme models were fit using the program lmer in the R package lme4 (Bates & Sarkar, 2007) and the default penalized quasi-likelihood method for estimating the parameters. Significance tests on the interactions and the main effects were carried out by computing the deviance statistic (−2 × log-likelihood). Change in deviance is distributed as chi-square, with degrees of freedom equal to the number of parameters deleted from the model.

A first lme model showed that children did not use the 12 DMs with the same frequency, χ²(11, N = 103) = 374.920, p < .001. The DMs used more often were rationalization, passive aggression, displacement, idealization, and regression (see Figure I).

In a second lme model, we analyzed the presence/absence of each DM as a function of DM type and child age and gender. Given that the three-way interaction (DM Type × Age × Gender) was significant, χ²(35, N = 103) = 64.757, p < .002, we then analyzed each DM separately, with age and gender as independent variables. Table I shows the deviance statistics and the significance levels.

We found significant age and/or gender effects for the following DMs: denial, displacement,
idealization, rationalization, reaction formation, and regression. No age and/or gender effects were found for acting out, identification, passive aggression, suppression, repression, and undoing (see Table I).

For denial, we found a significant Gender × Age interaction (see Figure II). For boys, no difference was found in the likelihood of using this defense between the first and the second age groups.

Table I. Defense Mechanisms Presence Related to Age and Gender: Deviance Statistics and Significance Levels

<table>
<thead>
<tr>
<th>Defense mechanism</th>
<th>χ^2_a</th>
<th>χ^2_b</th>
<th>χ^2_c</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acting out</td>
<td>0.215</td>
<td>1.697</td>
<td>0.487</td>
</tr>
<tr>
<td>Denial</td>
<td>7.823*</td>
<td>1.340</td>
<td>1.973</td>
</tr>
<tr>
<td>Displacement</td>
<td>2.253</td>
<td>9.255**</td>
<td>8.908*</td>
</tr>
<tr>
<td>Idealization</td>
<td>1.341</td>
<td>0.944</td>
<td>6.975*</td>
</tr>
<tr>
<td>Identification</td>
<td>0.023</td>
<td>0.286</td>
<td>0.454</td>
</tr>
<tr>
<td>Passive aggression</td>
<td>0.199</td>
<td>0.616</td>
<td>0.507</td>
</tr>
<tr>
<td>Rationalization</td>
<td>2.376</td>
<td>0.017</td>
<td>11.058**</td>
</tr>
<tr>
<td>Reaction formation</td>
<td>2.462</td>
<td>7.659**</td>
<td>0.252</td>
</tr>
<tr>
<td>Regression</td>
<td>1.001</td>
<td>19.017**</td>
<td>9.283*</td>
</tr>
<tr>
<td>Repression</td>
<td>1.154</td>
<td>0.878</td>
<td>1.079</td>
</tr>
<tr>
<td>Suppression</td>
<td>1.546</td>
<td>0.079</td>
<td>0.593</td>
</tr>
<tr>
<td>Undoing</td>
<td>2.162</td>
<td>0.019</td>
<td>0.531</td>
</tr>
</tbody>
</table>

a $df = 2$, *b* $df = 1$. *c* For denial, $df = 1$; for all other defense mechanisms, $df = 2$.

p $< .05$; **p** $< .01$.

Figure II. Proportion of defense mechanisms (DMs) present as a function of age and gender for the 12 mechanisms studied: acting out, denial, displacement, idealization, identification, passive aggression, rationalization, reaction formation, regression, repression, suppression, and undoing.
$t(152) = 0.618, ns,$ and between the first and the third age groups, $t(152) = -0.817, ns.$ For girls, the odds of not observing denial decreased by 16% from the first to the second age group, $t(131) = -2.1709, p < .05$; no difference was found between the first and the third age groups, $t(131) = -0.984, ns.$

We found age and gender effects for both displacement and regression. The odds for displacement were 4.3 times larger for girls than for boys (95% confidence interval [CI]: 1.743–16.168) and 5.4 times lower in the oldest age group than in the intermediate age group (95% CI: 1.728–23.517). The odds for regression were almost eight times larger for girls than for boys, (95% CI: 3.149–20.207) and were 4.08 larger for the intermediate age group than for the oldest age group (95% CI: 1.767–14.583).

For idealization and rationalization, we found age effects in opposite directions. The odds for idealization decreased by a factor of 5.6 from the first to the last age group (95% CI: 1.276–24.630), and the odds for rationalization were 4.7 times larger for the oldest group than for the youngest group (95% CI: 1.929–11.378). For reaction formation we found a gender effect: The odds were 3.44 times larger for girls than for boys (95% CI: 1.339–14.740).

How Many Different DMs?

The number of different DMs (from 0–12) used by each child across the four episodes of pretend play was submitted to an analysis of variance, with gender and age as independent variables. We found a significant age effect, $F(2, 95) = 3.356, p < .05$, which indicated that the number of different DMs decreased by about 20% from the first to the last age group (see Figure III). Neither the effect of gender nor the Age × Gender interaction were significant.

Is Temperament Associated with DM Use?

The TABC is used to assess individuals’ capacity to positively react to new situations, to express positive and negative feelings, and to persist in a task. The questionnaire consists of six subscales: Activity, Adaptability, Approach/Withdrawal, Emotional Intensity, Distractibility, and Persistence. We analyzed the scores of each subscale with an analysis of covariance, with DM number (ranging from 0–12) and child age and gender as predictors. Only Adaptability and Approach/Withdrawal scores resulted associated with DM number.

For the Adaptability scores, we found a significant interaction between DM number and gender, $F(1, 91) = 7.273, p < .01$ (Figure IV). The Adaptability scores decreased with the increase of DM number for boys but not for girls, if the effect of age was statistically controlled. We also found an Age × Gender interaction, $F(2, 91) = 4.790, p < .002$. The Adaptability scores increased with age for girls but not for boys, if the effect of DM number
was statistically controlled. Neither the three-way interaction nor the DM Number \times Age interaction reached significance (R^2 = .30).

We found that Approach/Withdrawal scores were positively associated with DM number, \(t(95) = 2.161, p < .05 \). We also found a significant age effect: Older children showed lower Approach/Withdrawal scores, \(F(2, 95) = 5.033, p < .01 \), if DM number was statistically controlled. The mean Approach/Withdrawal scores for the three age groups (47–55, 60–72, and 90–102 months) were 38.125 (0.926 SE), 36.135 (0.881 SE), and 30.658 (0.816 SE), respectively (R^2 = .16). (See Figure V.) No other significant main effects or interactions were found.

Are Verbal Abilities Associated with Specific DMs?

We computed the average WPPSI/WISC-R Verbal scores based on the presence/absence of each DM. A significant difference was found for rationalization, suppression, and identification (Figure VI). Children using rationalization scored significantly higher (\(M = 12.81, SE = 0.247 \)) on the WPPSI/WISC-R Verbal subtest than those who did not (\(M = 10.950, SE = 0.270 \)), \(t(97) = 3.010, p < .005 \). Children using suppression scored significantly lower on the WPPSI/WISC-R Verbal subtest (\(M = 11.176, SE = 2.404 \)) than those who did not (\(M = 12.671, SE = 2.750 \)), \(t(97) = 2.086, p < .05 \). Children using Identification (\(M = 11.210, SE = 2.262 \)) scored significantly lower on the WPPSI/WISC-R Verbal subtest than those who did not (\(M = 12.700, SE = 0.278 \)), \(t(97) = 2.176, p < .05 \). No difference was found when grouping the children according to the presence/absence of the other DMs.

Discussion

We used DHP to study the development of DMs in children ages 47 to 102 months. In the four episodes of pretend play that we had examined, children’s use of DMs varied with age and gender and was associated with temperament and verbal abilities.

Age Effects

We found that the number of DMs decreased with age, as shown in Figure III (see also Brody et al., 1985). This result is consistent with the hypothesis that at about 84 to 102 months of age children enter a latency period, when they overcome their internal conflicts and direct attention and energy toward the external world (Freud, 1923/1961). Consistently with A. Freud’s (1936/1965) hypothesis that defenses have different developmental patterns, we found that the likelihood of observing each DM varied with age. For example, displacement, idealization, or regression was observed less frequently for children ages 90 to 102 months than for children ages 60 to 72 months. Denial and regression, generally viewed as immature modes of functioning, were used more often by children ages 60 to 72 months, which would explain why their presence diminished with cognitive development and with increased complexity in emotional functioning (A. Freud, 1936/1965; Laor et al., 2001).

The developmental pattern of rationalization was the clearest of all, showing that the odds of observing this DM clearly increased with age. For the oldest age group, moreover, rationalization was the DM used more frequently. For children ages 90 to 102 months, the odds of observing rationalization were 3.02 to 92.07 times larger than those of any other DM. This result is consistent with the establishment of concrete operational thinking and with the
maturation of processes that underlie categorical classification capacities (Keil, 1989; Sloutsky et al., 2001).

Gender Effects
Speculations about gender differences in children’s defenses have been formulated by hypothesizing that girls tend to use internalizing defenses and that boys tend to use externalizing defenses (Brody et al., 1985; Laor et al. 2001). Consistent with this hypothesis, we found that regression (an internalizing defense) was used more by girls than by boys; conversely, denial, which is related to the external reality, was more present in boys (see also Feldman et al., 1996).

Gender-related differences in DM use may be influenced by the different attitudes that parents and teachers have toward boys and girls (Fagot & Hagan, 1991) but also by a gender-specific reorganization involving oedipal contents that takes place at about 60 to 78 months of age (Watson & Getz, 1990; Yorke, Wiseberg, & Freeman, 1989).

Temperament
Although relatively little research has been conducted with children, the temperament–DM connection is well established in adults (Wolmer et al., 2001). For example, an association between more “mature” defenses and successful life adaptation has been found in female adolescents (Araujo, Ryst, & Steiner, 1999). In the present research, when comparing TABC scores with the number of different DMs used by each participant, we found that children adjusting less easily to changes in rules or to a new context (Adaptability) used a larger number of DMs. Moreover, children who were less outgoing toward peers and adults (Approach/Withdrawal) tended also to use a larger number of DMs. The association between TABC scores and DM frequency in the present research is thus consistent with the hypothesis that, when used too frequently, DMs can be seen as a sign of maladjustment (Sandstrom & Cramer, 2003a,b).

Several issues concerning the DMs remain controversial, one of them being whether defenses are pathological or whether there is such a thing as a “normal” defense. Our findings suggest that DMs are “normal,” because they were expressed by all our “normal” children, but their disproportionate use is an indicator of psychological difficulties (see also Lingiardi & Madeddu, 2002).

Verbal Intelligence
A positive association between IQ and rationalization has been found in adults and adolescents (Haan, 1963; Schimek, 1968). Consistent with these results, we found that children who used rationalization performed significantly better on the WPPSI/WISC-R Verbal subtest. Moreover, we also found that the use of identification and suppression (two DMs often recognized as primitive; e.g., Vaillant, 1992) was associated with lower WPPSI/WISC-R Verbal subtest scores.

Conclusion
The DHP task allows normal children to reveal their DMs in an ecologically satisfactory manner. The analysis of children’s pretend play provides converging evidences that DMs relate to central aspects of the emotional lives of children and manifest themselves differently depending on age, gender, temperament, and verbal skills. DM use is consistent with major shifts in many domains, including emotional, ego, and self-concept development. Moreover, DM presence stems from the ways in which the individual relates with oneself and the human environment.

The DHP may prove to be an asset for the psychotherapist because information gained from an assessment of DMs is beneficial for treatment.
planning and intervention (Siefert, Hilsenroth, Weinberger, Blagys, & Ackerman, 2006). A deeper knowledge of the nature of the DMs and how they operate in child development may be useful to bridge the gap among theoretical knowledge, empirical data, and clinical intervention.

Acknowledgements

This research was funded by The Tavistock Medical School (London) and Ministero Istruzione, Universita Ricerca (Rome). We wish to thank Paola Dario, Elisa Pavan, and Cristina Suplina for their contributions in data collection and coding. We wish to thank the two anonymous reviewers for their valuable comments and suggestions on a previous version of this manuscript.

Note

1 Note, however, that the DSM-IV-TR (American Psychiatric Association, 2000) uses the terms defense mechanisms and coping mechanisms interchangeably to refer to both defense mechanisms and coping styles, although the overlapping of these two concepts is disputed (Erdelyi, 2001).

References

Development of childhood defense mechanisms

Appendix A
Defense Mechanisms: Definitions and Examples

<table>
<thead>
<tr>
<th>Defense mechanism</th>
<th>Definition</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acting out</td>
<td>Child deals with emotional conflicts, or with internal/external stressors, by acting rather than by expressing feelings or by thinking over what happened.</td>
<td>At mealtime, the mother doll reproaches the child doll for being untidy; the child doll throws his plate against the wall. The experimenter asks, “Who made this noise?” The child does not answer. During sad (bad) time episode, the child says, “At my home, we never have a bad time.” During mealtime, the child doll does not talk about her family when it would be appropriate; rather, she speaks at length about her dog, clearly making the pet act as one of the family components. In the sad (bad) time episode, the child tells a story like the following: During an earthquake, the dollhouse collapses, but the father doll is able to save the mother doll from the ruins. Afterwards, the father doll rebuilds the house and makes it as nice as it was before the earthquake.</td>
</tr>
<tr>
<td>Denial</td>
<td>Child avoids problems, wishes, feelings, conflicts by putting them on hold.</td>
<td>During sad (bad) time episode, the child says, “At my home, we never have a bad time.”</td>
</tr>
<tr>
<td>Displacement</td>
<td>Child displaces emotional conflicts to less threatening objects. The feelings stay the same, but their object changes.</td>
<td>During mealtime, the child doll does not talk about her family when it would be appropriate; rather, she speaks at length about her dog, clearly making the pet act as one of the family components. In the sad (bad) time episode, the child tells a story like the following: During an earthquake, the dollhouse collapses, but the father doll is able to save the mother doll from the ruins. Afterwards, the father doll rebuilds the house and makes it as nice as it was before the earthquake.</td>
</tr>
<tr>
<td>Idealization</td>
<td>Child attributes exaggerated positive qualities to an object or person.</td>
<td>After mealtime, the child doll greets the mother doll and pretends that he must start his truck driver’s shift, while leaving the mother doll at home alone.</td>
</tr>
<tr>
<td>Identification</td>
<td>To avoid internal conflicts, child models self on another person’s character and behavior.</td>
<td>During the mealtime episode, the father doll reproaches the mother doll with a nasty comment. The child doll says, “Dad broke a plate and while going to fetch a broom, he stumbled and badly hurt himself.”</td>
</tr>
<tr>
<td>Passive aggression</td>
<td>Child expresses indirect or passive aggression toward others.</td>
<td>The father doll and the mother doll quarrel. The child doll says, “They are not fighting, just discussing.” The child doll wants to sleep in his parents’ bed because “those two beds have no gap in between.”</td>
</tr>
<tr>
<td>Rationalization</td>
<td>Through faulty and false reasoning, child modifies emotional conflicts by elaborating seemingly logical and acceptable explanations.</td>
<td>The father doll and the mother doll quarrel. The child doll says, “They are not fighting, just discussing.” The child doll wants to sleep in his parents’ bed because “those two beds have no gap in between.”</td>
</tr>
<tr>
<td>Reaction formation</td>
<td>Child converts behaviors, thoughts, or feelings that are perceived to be unacceptable into their opposites.</td>
<td>With force, the child doll wraps a scarf around the neck of his sister doll and then turns his aggressive action into a friendly emotion, saying, “You are so beautiful, I really love you.” (Kragh, 1969)</td>
</tr>
<tr>
<td>Regression</td>
<td>Rather than handling emotional conflicts and internal/external stressors in a more mature fashion, child regresses to behaviors from an earlier stage of development.</td>
<td>The child doll is placed in a high chair as if she was a baby; the child doll sits on the father doll’s shoulders, sucking her fingers or a pacifier.</td>
</tr>
<tr>
<td>Repression</td>
<td>Child deals with emotional conflicts or internal/external stressors by expelling disturbing wishes, thoughts, or experiences from conscious awareness.</td>
<td>The father doll scolds the child doll for his bad behavior. The child doll expresses his anger in a generalized fashion, never directing it toward the father doll.</td>
</tr>
<tr>
<td>Suppression</td>
<td>Child deals with emotional conflicts or internal/external stressors by intentionally avoiding thinking about disturbing problems, wishes, feelings, or experiences.</td>
<td>The mother doll and father doll have an argument. When the experimenter asks, “What happened afterward?” the child switches to a different topic.</td>
</tr>
<tr>
<td>Undoing</td>
<td>Child deals with emotional conflicts by using words or behaviors that are designed to negate or to symbolically amend unacceptable thoughts, feelings, or actions.</td>
<td>During the bedtime episode, the child doll is very anxious and reluctant to go to bed. Suddenly, the child doll starts to behave as if it were already waking-up time and runs down the stairs and goes to eat breakfast.</td>
</tr>
</tbody>
</table>