{
"cells": [
{
"cell_type": "markdown",
"id": "df863c1d-0eee-4851-8c0a-39e39f7a50e6",
"metadata": {},
"source": [
"(reglin-ml-notebook)=\n",
"# Modello di Regressione Bivariato e ML"
]
},
{
"cell_type": "markdown",
"id": "7f3d677a-dcd5-4c0b-8a54-97c7943c5721",
"metadata": {},
"source": [
"Il modello di regressione bivariato stimato con il metodo della massima verosimiglianza (ML) produce risultati sostanzialmente simili a quelli ottenuti con l'approccio bayesiano, a patto che si utilizzino prioris debolmente informativi. Solo in casi di modelli più complessi, come quelli gerarchici, i due approcci divergono significativamente.\n",
"\n",
"Per semplicità, in questo capitolo ci concentreremo sul modello di regressione bivariato stimato con il metodo ML."
]
},
{
"cell_type": "markdown",
"id": "54b975a9-9d7d-4220-a798-1cf8315ac261",
"metadata": {},
"source": [
"## Preparazione del Notebook"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "cf16f40f-f73b-4448-8ef2-da87eee8d1f6",
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"import pandas as pd\n",
"import matplotlib.pyplot as plt\n",
"import seaborn as sns\n",
"import scipy as sc\n",
"import statistics as st\n",
"import arviz as az\n",
"import pingouin as pg\n",
"import warnings\n",
"from sklearn.linear_model import LinearRegression\n",
"\n",
"warnings.filterwarnings(\"ignore\")"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "5b9af9fd-566b-4020-a417-e42acb02908c",
"metadata": {},
"outputs": [],
"source": [
"# set seed to make the results fully reproducible\n",
"seed: int = sum(map(ord, \"regression_ml\"))\n",
"rng: np.random.Generator = np.random.default_rng(seed=seed)\n",
"\n",
"az.style.use(\"arviz-darkgrid\")\n",
"plt.rcParams[\"figure.dpi\"] = 100\n",
"plt.rcParams[\"figure.facecolor\"] = \"white\"\n",
"\n",
"%config InlineBackend.figure_format = \"retina\""
]
},
{
"cell_type": "markdown",
"id": "1c31f3e4-c42c-48fe-9942-2ba619e6052b",
"metadata": {},
"source": [
"## Stima dei Coefficienti del Modello di Regressione"
]
},
{
"cell_type": "markdown",
"id": "bb739a78-7e19-48a8-bb90-9cb2149de33b",
"metadata": {},
"source": [
"Consideriamo i dati forniti dal dataset `kidiq`."
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "af25600b-f94f-4653-8be3-b3e3968c446d",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
kid_score
\n",
"
mom_hs
\n",
"
mom_iq
\n",
"
mom_work
\n",
"
mom_age
\n",
"
\n",
" \n",
" \n",
"
\n",
"
0
\n",
"
65
\n",
"
1.0
\n",
"
121.117529
\n",
"
4
\n",
"
27
\n",
"
\n",
"
\n",
"
1
\n",
"
98
\n",
"
1.0
\n",
"
89.361882
\n",
"
4
\n",
"
25
\n",
"
\n",
"
\n",
"
2
\n",
"
85
\n",
"
1.0
\n",
"
115.443165
\n",
"
4
\n",
"
27
\n",
"
\n",
"
\n",
"
3
\n",
"
83
\n",
"
1.0
\n",
"
99.449639
\n",
"
3
\n",
"
25
\n",
"
\n",
"
\n",
"
4
\n",
"
115
\n",
"
1.0
\n",
"
92.745710
\n",
"
4
\n",
"
27
\n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" kid_score mom_hs mom_iq mom_work mom_age\n",
"0 65 1.0 121.117529 4 27\n",
"1 98 1.0 89.361882 4 25\n",
"2 85 1.0 115.443165 4 27\n",
"3 83 1.0 99.449639 3 25\n",
"4 115 1.0 92.745710 4 27"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"kidiq = pd.read_stata(\"../data/kidiq.dta\")\n",
"kidiq.head()"
]
},
{
"cell_type": "markdown",
"id": "d2c0d7c8-09e4-4773-af68-bd8c5f79fcc5",
"metadata": {},
"source": [
"Ci concentreremo sulla relazione lineare tra l'intelligenza del bambino e l'intelligenza della madre.\n",
"\n",
"Iniziamo rinominando le due variabili di interesse."
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "2d9c82fe-6db3-488d-bbad-aa8e7bfd33e4",
"metadata": {},
"outputs": [],
"source": [
"x = kidiq[\"mom_iq\"]\n",
"y = kidiq[\"kid_score\"]"
]
},
{
"cell_type": "markdown",
"id": "14172169-05ea-456e-912d-1bae6437473e",
"metadata": {},
"source": [
"Un diagramma a dispersione evidenzia un'associazione tra le due variabili in esame, che può essere ragionevolmente approssimata da una retta. Tuttavia, il grafico suggerisce anche che la relazione tra le variabili non sia particolarmente forte.\n",
"\n",
"In questo contesto, ci poniamo il duplice obiettivo di individuare la retta che meglio si adatta ai dati del diagramma e di quantificare la bontà di questo adattamento. In altre parole, vogliamo valutare quanto, in media, i punti del diagramma si discostano dalla retta individuata."
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "0ddb5fbb-47d7-48a2-a470-d5efa32cc777",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABbcAAAPXCAYAAAAYJXYaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzde5wU9Z3v/3eNwADRQTQRb0n2yHqJgRkFA7ntmg2anJ8b8ZZs4jiRDBAuoiASzWXdZHPiJqsGORgFNMCIjhM3MSqYuCe7amIuJl5AZzBeY8xGMWKiXBQGBLp+f3S6p7qmqrqquq7dr+fjwYPp7rp8q+pT3/rWp7/9LcM0TVMAAAAAAAAAAORIU9oFAAAAAAAAAAAgKJLbAAAAAAAAAIDcIbkNAAAAAAAAAMgdktsAAAAAAAAAgNwhuQ0AAAAAAAAAyB2S2wAAAAAAAACA3CG5DQAAAAAAAADIHZLbAAAAAAAAAIDcIbkNAAAAAAAAAMgdktsAAAAAAAAAgNwhuQ0AAAAAAAAAyB2S2wAAAAAAAACA3CG5DQAAAAAAAADIHZLbAAAAAAAAAIDcIbkNAAAAAAAAAMgdktsAAAAAAAAAgNwhuQ0AAAAAAAAAyB2S2wAAAAAAAACA3CG5DQAAAAAAAADInSFpFwCNY8uWLWkXwZVhGDrwwAMlSVu3bpVpmukWCPBAvCJviFnkDTGLPCFekTfELPKEeEXe5CFmR48eHeny6LkNAAAAAAAAAMgdktsAAAAAAAAAgNwhuQ0AAAAAAAAAyB2S2wAAAAAAAACA3CG5DQAAAAAAAADIHZLbAAAAAAAAAIDcIbkNAAAAAAAAAMgdktsAAAAAAAAAgNwhuQ0AAAAAAAAAyB2S2wAAAAAAAACA3CG5DQAAAAAAAADIHZLbAAAAAAAAAIDcIbkNAAAAAAAAAMgdktsAAAAAAAAAgNwhuQ0AAAAAAAAAyB2S2wAAAAAAAACA3CG5DQAAAAAAAADIHZLbAAAAAAAAAIDcIbkNAAAAAAAAAMgdktsAAAAAAAAAgNwhuQ0AAAAAAAAAyB2S2wAAAAAAAACA3CG5DQAAAAAAAADIHZLbAAAAAAAAAIDcIbkNAAAAAAAAAMgdktsAAAAAAAAAgNwhuQ0AAAAAAAAAyB2S2wAAAAAAAACA3CG5DQAAAAAAANSB3j4z0fmAtJHcBgAAAAAAAHJuVVdB8+ab6u4Jlqju7jE1b76pVV2FmEoGxIfkNgAAAAAAAJBjvX2mutYU/15xo/8Ed3ePqRU3FqftWkMPbuQPyW0AAAAAAAAgx9paDc2ZZZRf+0lwWxPbkjRnlqG2VsNjDiB7SG4DAAAAAAAAOdfR7j/B7ZTY7mgnsY38IbkNAAAAAAAA1AE/CW4S26gnJLcBAAAAAACAOuGV4CaxjXozJO0CAAAAAAAAAIhOKWFdSmSvuNFUz22mtm8fmIbENuoBPbcBAAAAAACAOmPvwU1iG/WI5DYAAAAAAABQhzraDbW0VL7X0iIS26gbJLcBAAAAAACAOtTdUzkUiVTswW1/yCSQVyS3AQAAAAAAgDpjf3iktQe39SGTQJ6R3AYAAAAAAADqiD2xPWeWoXvWNVWMwU2CG/WA5DYAAAAAAABQJ5wS26Uxtu0PmSTBjbwjuQ0AAAAAAADUAa/EdgkJbtQTktsAAAAAAABAzvlJbJeQ4Ea9ILkNAAAAAAAA5Fhvn//EdolTgru3jwQ38oXkNgAAAAAAAJBjba2GOqcV//aT2C6xJrg7pxWXA+TJkLQLAAAAAAAAAKA2MzqbdNJEM3CCuqPd0PhxJLaRTyS3ob6+Pv3hD3/Q5s2bNWLECI0ZM0atra0aM2ZM2kUDAAAAAACAT2ET1CS2kVckt0PYsWOHnnzySfX19amvr08bN27Upk2byp8fccQRuv/++yNf7759+/TJT35STz75ZMX73/rWt3T22WcHWlahUNAtt9yiW265RS+++OKgz5uamvSBD3xAF198sVpbW2sqNwAAAAAAAABEjeR2AF1dXbrjjjv0u9/9ToVCIfH1r169elBiO4wtW7bo4osv1m9+8xvXaQqFgn71q1/p4Ycf1iWXXKLp06fXvF4AAAAAAAAAiArJ7QAeeeQRPfvss6ms+8UXX9R1111X83L27Nmjiy66SI888kj5vSFDhujkk0/W2LFjtWPHDj366KN65plnytNfeeWVOuCAA/SpT32q5vUDAAAAAAAAQBRIbtdo5MiReu9736vf/va32rlzZ2zr+epXv6pdu3ZJkt7xjnfoz3/+c6jlXHPNNRWJ7WOOOUbLly/XkUceWTHdunXr9JWvfEV79uyRJH39619Xa2urjj322JBbAAAAAAAAAADRIbkdQHNzs1pbWzV+/HiNGzdO48eP19ixY9XU1KSPfvSjsSW377jjDj344IOSisnoj370o1qxYkXg5bzyyivq7u4uvz744IN18803a/To0YOmnTp1qgqFgr74xS9KKvbgXrp0qZYtWxZyKwAAAAAAAAAgOiS3A1iyZEni63zttdd05ZVXSpIMw9D/+T//R7/85S9DLWvlypV66623yq8XLVrkmNguOfPMM3X77beXe3rfd999evrpp3XccceFWj8AAAAAAAAARKUp7QLA2xVXXKGtW7dKkv7pn/5JJ554YqjlmKap//qv/yq/HjVqlD7xiU9Une/cc8+teP2Tn/wk1PoBAAAAAAAAIEoktzPsZz/7me655x5J0tvf/nZ94QtfCL2sJ554Qps3by6//shHPqLm5uaq802ZMkVDhw4tv77vvvtClwEAAAAAAAAAokJyO6N27Nihr3/96+XXX/7yl9XS0hJ6eevXr6947bcH+PDhw/We97yn/PqZZ57R9u3bQ5cDAAAAAAAAAKJAcjujlixZopdfflmS9KEPfcjXECJenn/++YrXxx9/vO95rcltSfr9739fU1kAAAAAAAAAoFYktzPo8ccf16233ipJam5u1te+9rWal2lPSB922GG+5z388MM9lwUAAAAAAAAASSO5nTF79uzRv/zLv6hQKEiS5syZo3e/+901L9c63vaQIUP0jne8w/e8hx56aMXrV155pebyAAAAAAAAAEAthqRdAFS68cYb9eyzz0qSxo4dq5kzZ0ay3J07d5b/HjFihAzD8D3v2972NtdlBRFknUmzli3L5QQk4hX5Q8wib4hZ5AnxirwhZpEnxCvyphFjluR2hvz+97/XihUryq+//vWva9iwYZEs25qQbm5uDjSvvQxhk9sHHnhgqPmSNmrUqLSLAPhGvCJviFnkDTGLPCFekTfELPKEeEXeNErMMixJRpimqX/5l3/RW2+9JUk6++yz9b73vS+y5e/evbv899ChQwPNa09u79q1K5IyAQAAAAAAAEBY9NzOiNtuu02PPvqopGIP58suuyzS5Tc3N6u/v19ScVzvIEoJ95Lhw4eHKsPWrVtDzZcEwzDK32ht27ZNpmmmXCLAHfGKvCFmkTfELPKEeEXeELPIE+IVeZOHmI16ZAeS2xmwefNmLV68uPz6i1/8okaPHh3pOkaOHFlOblt7cfthT26PHDkyVBmyeEI5MU0zN2UFiFfkDTGLvCFmkSfEK/KGmEWeEK/Im0aJWYYlyYD/83/+j9544w1J0qRJk3T22WdHvg5rQrq/v1+FQsH3vDt27HBdFgAAAAAAAACkgeR2yh599FHde++9kopjYf/rv/5rLOsZM2ZM+e+9e/fqL3/5i+95//SnP1W8PvTQQyMrFwAAAAAAAACEwbAkKbOOQ71nzx6dfvrpVeex97r+53/+Z11++eXl19/85jd15plnVkwzduzY8pjekvTyyy/rkEMO8VVGe3J77NixvuYDAAAAAAAAgLjQcztj9u3bV/WffbycQqFQ8bnTkCNHHXVUxesnn3zSd5ns09qXBQAAAAAAAABJI7ndICZOnFjx+rHHHvM1365du/T000+XXx977LE64IADIi0bAAAAAAAAAATFsCQpO+WUU/TMM88Emuc73/mOrrvuuvLrb33rW1UfQjlu3DiNGTNGmzdvliT97Gc/0+7du9Xc3Ow537333qs9e/aUX0+ZMiVQWQEAAAAAAAAgDvTcbhCGYejjH/94+fX27dv1ox/9qOp8t912W8Vr6zIAAAAAAAAAIC0ktxvIjBkzNGzYsPLrxYsXa8uWLa7T33XXXXrkkUfKr6dMmaLjjjsu1jICAAAAAAAAgB8ktxvIoYceqo6OjvLr1157Teeff75eeumlQdOuW7dOl19+efn10KFDtWDBgkTKCQAAAAAAAADVMOZ2AJs2bdKpp57q+Nm+ffsqpjv++OMdp7vppps0adKkWMrnx8KFC9XX16dHH31UkvTss8/qf//v/62TTz5ZRx11lHbu3KlHHnlk0DjgX/va13TsscemUWQAAAAAAAAAGITkdgCmaVYksb24TWeaZpRFCmzYsGH6zne+owULFujhhx+WJO3Zs0f33nuv4/RDhgzRwoUL9alPfSrJYgIAAAAAAACAJ4YlaUAHHXSQ1qxZoy9/+ct65zvf6ThNU1OTPvjBD+p73/ueZs6cmXAJAQAAAAAAAMCbYabdlRipMk1TGzdu1AsvvKBXX31Vw4cP15gxY9TW1qYxY8ZEui6vh1emzTAMHXjggZKkrVu3pt7DHvBCvCJviFnkDTGLPCFekTfELPKEeEXe5CFmR48eHenyGJakwRmGodbWVrW2tqZdFAAAACBVvX2m2lqNxOZDdnDsAQDIJ4YlAQAAANDwVnUVNG++qe6eYD2cuntMzZtvalVXIaaSIW4cewAA8ovkNgAAAICG1ttnqmtN8e8VN/pPcnb3mFpxY3HarjXF5SBfOPYAAOQbyW0AAAAADa2t1dCcWQNDS/hJclqTm5I0Z5bB8BQ5xLEHACDfSG4DAAAAaHgd7f6TnE7JzY52kpt5xbEHACC/SG4DAAAAgPwlOUlu1ieOPQAA+URyGwAAAAD+yivJSXKzvnHsAQDInyFpFwAAAAAAsqSUtCwlM1fcaKrnNlPbtw9MQ3KzPnHsAQDIF3puAwAAAICNvRcvyc3GwbEHACA/SG4DAAAAgIOOdkMtLZXvtbSI5GYD4NgDAJAPJLcBAAAAwEF3T+VwFFKxF6/9QYOoPxx7AADygeQ2AAAAANjYHyBo7cVrfdAg6g/HHgCA/CC5DQAAAAAW9uTmnFmG7lnXVDEOM0nO+sSxBwAgX0huAwAAAMBfOSU3S+Ms2x80SJKzvnDsAQDIH5LbAAAAACDv5GYJSc76xLEHACCfSG4DAAAAaHh+kpslJDnrC8ceAID8IrkNAAAAoKH19vlPbpY4JTl7+0hy5g3HHgCAfCO5DQAAAKChtbUa6pxW/NtPcrPEmuTsnFZcDvKFYw8AQL4NSbsAAAAAAJC2GZ1NOmmiGThJ2dFuaPw4kpt5xrEHACC/6LkNAAAAAAqfpCS5mX8cewAA8onkNgAAAAAAAAAgd0huAwAAAAAAAAByh+Q2AAAAAAAAACB3SG4DAAAAAAAAAHKH5DYAAAAAAAAAIHdIbgMAAAAAAAAAcofkNgAAAAAAAAAgd0huAwAAAAAAAAByh+Q2AAAAAAAAACB3SG4DAAAAAAAAAHKH5DYAAAAAAAAAIHdIbgMAAAAAAAAAcofkNgAAAAAAAAAgd0huAwAAAAAAAAByh+Q2AAAAAAAAACB3SG4DAAAAAAAAAHKH5DYAAAAAAAAAIHdIbgMAAAAp6O0zE50PAAAAqDcktwEAAICEreoqaN58U909wRLV3T2m5s03taqrEFPJAAAAgPwguQ0AAAAkqLfPVNea4t8rbvSf4O7uMbXixuK0XWvowQ0AAACQ3AYAAAAS1NZqaM4so/zaT4LbmtiWpDmzDLW1Gh5zAAAAAPWP5DYAAACQsI52/wlup8R2RzuJbQAAAIDkNgAAAJACPwluEtsAAACAO5LbAAAAQEq8EtwktgEAAABvQ9IuAAAAANDISgnrUiJ7xY2mem4ztX37wDQktgEAAIDB6LkNAAAApMzeg5vENgAAAFAdyW0AAAAgAzraDbW0VL7X0iIS2wAAAIALktsAAABABnT3VA5FIhV7cNsfMgkAAACgiOQ2AAAAkDL7wyOtPbitD5kEAAAAMIDkNgAAAJAie2J7zixD96xrqhiDmwQ3AAAAMBjJbQAAACAlTont0hjb9odMkuAGAAAAKpHcBgAAAFLgldguIcENAAAAuCO5DQAAACTMT2K7hAQ3AAAA4IzkNgAAAJCg3j7/ie0SpwR3bx8JbgAAADQ2ktsAAABAgtpaDXVOK/7tJ7FdYk1wd04rLgcAAABoZEPSLgAAAADQaGZ0NumkiWbgBHVHu6Hx40hsAwAAABI9twEAAIBUhE1Qk9gGAAAAikhuAwAAAAAAAAByh+Q2AAAAAAAAACB3SG4DAAAAAAAAAHKH5DYAAAAAAAAAIHdIbgMAAAAAAAANprfPTHQ+IA4ktwEAAAAAAIAGsqqroHnzTXX3BEtUd/eYmjff1KquQkwlA4IhuQ0AAAAAAAA0iN4+U11rin+vuNF/gru7x9SKG4vTdq2hBzeygeQ2AAAAAAAA0CDaWg3NmWWUX/tJcFsT25I0Z5ahtlbDYw4gGSS3AQAAAAAAgAbS0e4/we2U2O5oJ7GNbCC5DQAAAAAAADQYPwluEtvIOpLbAAAAAAAAQAPySnCT2EYeDEm7AAAAAAAAAADSUUpYlxLZK2401XObqe3bB6YhsY2souc2AAAAAAAA0MDsPbhJbCMvSG4DAAAAAAAADa6j3VBLS+V7LS0isY1MI7kNAAAAAAAANLjunsqhSKRiD277QyaBLCG5DQAAAAAAADQw+8MjrT24rQ+ZBLKG5DYAAAAAAADQoOyJ7TmzDN2zrqliDG4S3MgqktsAAAAAAABAA3JKbJfG2LY/ZJIEN7KI5DYAAAAAAADQYLwS2yUkuJF1JLcBAAAAAACABuInsV1CghtZRnIbAAAAAAAAaBC9ff4T2yVOCe7ePhLcSB/JbQAAAAAAAKBBtLUa6pxW/NtPYrvEmuDunFZcDpC2IWkXAAAAAAAAAEByZnQ26aSJZuAEdUe7ofHjSGwjO+i5DQANJOzPxvi5GQAAAADUl7AJahLbyBKS2wDQIFZ1FTRvfvAHf3T3mJo339SqrkJMJQMAAAAAAAiO5DYANIDePlNda4p/B3mytfUJ2l1r6MENAAAAAACyg+Q2ADSAttbBT7auluC2Jral4oNG+PkZAAAAAADICpLbANAgrE+2lrwT3E6Jbb9P0AYAAAAAAEgCyW0AaCB+EtwktgEAAAAAQB6Q3AaABuOV4CaxDdS3sOPmM94+ED/OTwAAgOBIbgNAA3JKcJ82tUBiG6hjq7oKmjff/wNlS7p7TM2bb2pVVyGmkgGo5fy84KKCrl++M6aSAQAAZBvJbQBoUPYE9/btA5+R2AbqS2+fqa41xb/9PFC2xPprjq419BAF4hDF+blsRb/Wb9gTVxEBAAAyi+Q2ADSwjnZDLS2V77W0iMQ2UGfaWv0/ULbEaZiitlbqBiBqUZyfCxeM1MQJQ2MrIwAAQFYNSbsAJY8++qg2bNigjRs36rXXXtO2bdtkGIZaWlp08MEHa/z48ZowYYJOOumktIsKAHWju8es6LEtFXtwd/eYJLiBOlM6p0sJsdL/Tuc64+8Dyarl/Jw729DM6SMSKCUAAED2pJrcNk1T3/ve97RmzRr98Y9/HPSZJBlGsUF37733SpLe+c536nOf+5zOPffc8mcAgODsN8ctLQNDk3jdVAPILz8JNBLbQDrCn5/8GBcAADSu1JLbmzdv1he+8AU9+uij5US2NJDMtieuS9P88Y9/1De+8Q39+Mc/1uLFi3XooYcmV+gEvfzyy3ruuef00ksv6c0339SQIUM0atQojR07Vu9973s1bNiwyNbV19enP/zhD9q8ebNGjBihMWPGqLW1VWPGjIlsHQCyxS15ZX2fBDdQn7wSaCS2K63fsEdjjwo+X2+fyRAuCIXzE6gUtj6lHgaAxmGY1sxyQl577TV9+tOf1qZNm2SaZjmRXa0o9umOPPJI/cd//IcOPvjgeAtss2PHDj355JPq6+tTX1+fNm7cqE2bNpU/P+KII3T//fcHWmZ/f78eeOAB/fSnP9Wvf/1rbd682XXa5uZmnXbaaZo+fbqOOeaYUNtQKBR0yy236JZbbtGLL7446POmpiZ94AMf0MUXX6zW1tZQ67DbsmVLJMuJg2EYOvDAAyVJW7durRqLQJpqjddqN8fcPCNq1LHZ5PXrDamxz33DMHTr94Zp2Yp+zZ1t6Lxz/e+H0n7tnCbN6KRHLcIJcn5SxyJv/Mbsqq6CutYEvx5RDyNK1LHImzzE7OjRoyNdXirJ7c985jN6/PHHK5LV73jHO/SJT3xCJ554oo466igdcMABkqQ33nhDL7zwgjZs2KAf//jHevXVV2UYRvngnHDCCbrtttsSKXdXV5fuuOMO/e53v1OhUHCdLmhy+4UXXtDZZ5+tnTt3BirP0KFDdeGFF2rOnDmB5tuyZYsuvvhi/eY3v/G1jksuuUTTp08PtA639WZVHk5+oKSWePWbuCbBjShRx2aX/VwvafRzvm+jdMFFA209v/vDvj+vv5aHcCI8v+cndSzyxk/M9vaZmjc/eFuUehhRo45F3uQhZqNObic+LMmPf/zjcmLbNE0NHz5cCxYs0Pnnn6/99ttv0PRjxozR3/7t3+rUU0/VpZdeqptvvllLly7Vrl27ZJqment79aMf/Uif+MQnYi/7I488omeffTby5e7atWtQYnu//fbT8ccfr2OPPVZvf/vbtW/fPv3P//yPHnzwQb355puSpD179mjJkiV64403dOmll/pa1549e3TRRRfpkUceKb83ZMgQnXzyyRo7dqx27NihRx99VM8880x5+iuvvFIHHHCAPvWpT0W0xQDSECRhHeTBVgDyq6PdUM9tlQ+WbWnhXG9rNbRwwUgtWVpsn/mpA53qWBIqqAXnJxpZW6uhObOCtUWphwGgMSWe3F61apWkYm/tESNG6Lvf/a5OOukkX/M2NTXpc5/7nMaPH6/Pf/7z6u/vl2maWrVqVSLJbScjR47Ue9/7Xv32t78N3PPayQknnKB/+qd/0sc//nHtv//+gz5/4403tGTJEt16663l91auXKmTTjpJ//AP/1B1+ddcc01FYvuYY47R8uXLdeSRR1ZMt27dOn3lK1/Rnj17JElf//rX1draqmOPPTbspgFIUW9f8J7YTgnu8ePETQJQR7p7KhNnUnHog+4es+ETaDOnj5AkXwlufu2COHB+otEF6WxBPQwAjSvRAaj+/Oc/68knn5RhGDIMQ5dcconvxLbVxIkTtXDhwnLX+qefflp//vOfoy7uIM3NzWptbdV5552nb33rW/rRj36k9evXq7u7u+Yu9SeeeKK6u7v1H//xHzrnnHMcE9uSdMABB+irX/2qZs2aVfH+t7/97arreOWVV9Td3V1+ffDBB+vmm28elNiWpKlTp+qKK64ov96zZ4+WLl3qd3MAZExbq6HOacW/gzT2O9oNzZlVnLZzGoltoJ44jelbsuJGU9092fsJY9JmTh+hubMH6j2n/UJCBXHg/ASKrG1RiXoYADBYosntxx9/XFKx1/bIkSP16U9/OvSyPv3pT+ttb3vboGXHacmSJfrBD36gr371qzr77LN19NFHq6mp9l149NFH67bbbtP73vc+3/PMnz+/Iin9u9/9Ts8//7znPCtXrtRbb71Vfr1o0SLPpPyZZ55ZUab77rtPTz/9tO8yAsiWGZ1Nuv7a4I39jnZD119r8EAeoI44JQLuWddUNYHQiDra3fcLCRXEgfMTqOSV4KYeBgAkmqn4y1/+Iqk4uHlbW5uGDRsWelnDhg3TCSecMGjZeTRkSPDRYYYOHaqPfexjFe/19fW5Tm+apv7rv/6r/HrUqFG+hnI599xzK17/5Cc/CVhSAFkStuc1PbaRFb194ZI5YeerR16JAD895BqR0345bWohkoQKMQ0rzk/AWZz1MAAg3xJNbm+3DBp30EEH1by80tM/peJY1I3mXe96V8VrrwT/E088oc2bN5dff+QjH1Fzc3PVdUyZMkVDhw4tv77vvvtClBQAgNqt6ipo3vzgyZzuHlPz5pta1VWIqWT54aeHGwk0Z/b9Yh0LOWxChZiGVfjzkzhAY4ijHgYA5F+iyW3rONLbtm2reXnWZLl1iJJGsWPHjorX1iS03fr16yten3jiib7WMXz4cL3nPe8pv37mmWcq9jsAAEno7TPVtab4d5BkqzVZ1LWmsXu7BvnpNgluZx3tRsXYx1JxLOSwPbaJaZTUcn4uv8HUytX9sZcRyIIo62EAQH1INLld6q1tmqaeeOIJFQrhexkUCgX99re/HbTsRvLMM89UvB4zZozrtPbxuI8//njf67EmtyXp97//ve95AQCIQltr8GSrU7KoUYfY6e0LPiapU4K70ROp3T2m7N/xb9+uUIl/YholUZyfS5bu1PoNe2IrI5AVUdbDAID6kGhye9y4cZKKY25v3bpV//mf/xl6Wf/v//0/vf7664OW3Sh27type++9t/y6qalJkydPdp3enpA+7LDDfK/r8MMP91wWAABJCNKbmAdMVWprNdQ5rfh3kH1h3eed0xp7/H17TFl7Dobt2U5MQ4rm/LxgzghNnOD+K06gHsRRDwMA8i/4kwxr8M53vlPvfve79cc//lGmaepb3/qWWltb9c53vjPQcl588UV985vflGEYMk1T73rXuwIvI+9Wr16tnTt3ll9PmjTJs/e6dbztIUOG6B3veIfvdR166KEVr1955ZUAJQUAIDqlpE/p5rb0vzUZRBLQ2YzOJp000QycoO5oNzR+HIltp5iyvu8Ui34Q05BqOz9bxxs6+e9HxlQyIBvirIcBAPmWaM9tSfrsZz8r0zRlGIb+8pe/qL29XQ888IDv+X/xi1/ovPPO02uvvVZeTkdHR4wlzp7nnntON9xwQ8V7F154oec81kT4iBEjZBj+L/j28cytywIAIGlevV1JAnoLm6Bu7MR2oSKmzpg6kDgJ0vPaa0iXrMV02OFnGn3YmlpFfX5yHFEvvOpBnhEBAEi057YkffrTn9Ytt9yiP/7xjzIMQ3/+8581Z84cnXDCCZo6dapOPPFE/a//9b/U3NwsSXrrrbf0wgsv6LHHHtPdd9+tDRs2lJPakvSud71Ln/nMZ5LejNTs3LlTCxcu1FtvvVV+76yzztL73ve+qvOVlPatX8OGDXNdVhBBEupJs5Yty+UEJOIV+RNHzH72PEOGUdDyGwZ6a/XcVjkO59zZhjraE/8eH3WgFKcrV/eXY0ySTpoorV0nHX6YWY4tp1g0DFXEXndP8fPpnyv20HWSlZhe1VXQ6ptMzZ2tQOvys42Ih1Mdy3FElgVpF9i/YHSqB/3Uw0BY3HshbxoxZhNPbg8dOlTLli1Te3u7tm/fXh5a5PHHH9fjjz9enm6//faTYRjau3dvxfylxLZpmho1apSWLVumoUMbY3w50zT1pS99Sc8991z5vXe9613653/+56rz7t69u/x30P1lT27v2rUr0PwlBx54YKj5kjZq1Ki0iwD4Rrwib6KM2QsvkIYP79eSpcUvXa1JwIULRmrm9BGRrQuNZ+XqgdiSpH/6ZLO+f3uxPbX8BlPDhzeXY8wei9bPiwny4vurbzL1kZPf5jo2ctoxvX7DHq2+afugbagmyDYiXqNGjeI4Ile82gXWmJS860GvehiICvdeyJtGidlUvsocO3asVq9erSOPPLKiF7ZpmuV/e/fu1Z49eyrek1RObB955JFatWqVxo4dm8YmpOLf/u3f9JOf/KT8+oADDtB1112nAw44oOq81t7ae/YEe5K6tZe4JA0fPjzQ/AAAxGXm9BEaNaqyR8KoUQY3s6jJ+g17KhLbCxeM1Nf+ZX8tXDAwrvGSpTu1cnV/+fXM6SMGff71b7w5aDnVkoVpxvTECUM9t9GJ/UsAP9uIeHEcUQ+c6uFq9aBTPbx+Q7B7XwBA/iTec7vkve99r+666y5de+21uv3227Vjxw5J7l3mSwnut73tbfrkJz+piy66SPvvv3+SRU7VsmXLdMstt5RfNzc3a9myZTr22GN9zT9y5Ej19xcbtdZe3H7Yk9sjR4Z7YM3WrVtDzZcEwzDK32ht27at/GUKkEXEK/Imzpjt7ilo27bK5W3bZuq6Za/zc2SE9rdjDV0wZ4SWrejX3NlN+uTZu7V162598mxp1y6j/NP3JUt3ateu/nKsWT8/aaLKPb2l4k/pS8vxknZMV9tGe1mtw7b43UZEy6mO5Tgiy/y0C8YeJU3/nPHX4XX8x6Q19qd/ztDYo3Yow7ehyAHuvZA3eYjZqEd2SC25LRUfVPjlL39ZF110kf77v/9b69ev1xNPPKHXXntN2//6O8yWlhYdfPDBGjdunCZOnKhTTz21oZLaknTrrbdq6dKl5ddDhgzRkiVLNGnSJN/LGDlypF577TVJUn9/vwqFgpqa/N0glb54sC4rjCyeUE6svxQAso54Rd5EGbP2B0y1tAwM47D8BlOmWeBhkght3tyRev/koRp71I6KmD3vXEOmqXLs2WPtvHMNvfyyqbV3Dyxrzizjr/N5x35WYrraNjqV1e82Il7WOpbjiDzwahdM/5yhiROKD00NEpPnnWto3HuDzwdUw70X8qZRYjbV5HbJ/vvvr7POOktnnXVW2kXJnLVr1+ob3/hG+bVhGPq3f/s3TZkyJdByxowZoxdffFGStHfvXv3lL3/RIYcc4mveP/3pTxWvDz300EDrBgAgak4JmY52o+L90v8kuBHWxAlDHXv8lWLKKda6ewYntv3EYNZiuto2OpUV2cNxRN61tYaLybDzAQDyJxPJbTi777779JWvfKXiW5bLL79cZ555ZuBljR07Vo8++mj59csvvxw6ud1I45wDALLHKyHjlcgBouQUaz23mRUPgaw1se22Huv7cYpyG5EejiMAAKhnDEaZUb/+9a918cUXa+/eveX3Lr74YnV0dIRa3lFHHVXx+sknn/Q9r31a+7IAAEiKn56GHe2G5swaeG/Fjaa6e+r/53hInj3Wok5su60nyZiOYhuRPo4jAACoVyS3M6i3t1cXXHBBxYMcZ86cqblz54Ze5sSJEyteP/bYY77m27Vrl55++uny62OPPVYHHHBA6HIAABBWkJ/Qk+BGUjraDbW0VL7X0uKvZ3VeYrqWbUR2cBwBAEA9IrmdMc8++6w+//nPa+fOneX3zj33XF166aU1LXfcuHEaM2ZM+fXPfvYz7d5d/WnT9957r/bs2VN+HXSsbwAAotDbF3xsWKdkYG8fCW5Eq7uncngHqdgrtlriOU8xHXYbkS0cRwAAUI8yM+b266+/rtdff11vvPFGxVAcfr3vfe+LoVTJ+uMf/6jp06dr27Zt5ffOOOMMfe1rX6t52YZh6OMf/7huvvlmSdL27dv1ox/9SOecc47nfLfddlvF649//OM1lwUAgKDaWg11TjPVtSbYT+itY812TuMBU4iWved1S8vAcA/VxsbOS0zXso3IDo4jAACoV6kmt9evX6/vf//7+s1vfqNXX3019HIMwwg0hnQWbd68WZ2dnfrzn/9cfu9jH/uYvvWtb8kwomlozpgxQ7fddlt5uJPFixfrox/9qEaPHu04/V133aVHHnmk/HrKlCk67rjjIikLAKB+9PaZoRJsQeeb0dmkkyYGX1dHu6Hx40hsI1puQ4pY36+WNMx6TEexjYhWmPqW4wgAAOpZKsOSvPnmm7rkkkvU0dGhdevWafPmzTJNs6Z/ebZt2zbNnDlTL730Uvm9v/u7v9PixYu13377RbaeQw89tOKBlK+99prOP//8ivWWrFu3Tpdffnn59dChQ7VgwYLIygIAqA+rugqaNz/42L/dPabmzTe1qqsQaL6wyTwS24iS11jZQcfGzmpMR7mNiEaY+pbjCAAA6l3iPbd3796tWbNm6bHHHpNpmjIMQ4Zh5CJBvWnTJp166qmOn+3bt69iuuOPP95xuptuukmTJk2qeO/+++/Xs88+W/Her371K51wwgmBynfmmWfqm9/8puc0CxcuVF9fnx599FFJxTG+//f//t86+eSTddRRR2nnzp165JFH9Mwzz1TM97WvfU3HHntsoPIAAOpbb19xSAUpWK8/a7Kla41C9VwF0uLnIZDWoUOs/+elV2wjbGPehKlv7cdRksaPq5yG4wgAAPIu8eT2ypUrtWHDhoqk9tChQ3XiiSdq7Nixamlp0dChQ5Muli+maVYksb24TeeUxHd6r1AI1pPN7zzDhg3Td77zHS1YsEAPP/ywJGnPnj269957HacfMmSIFi5cqE996lOBywMAqG9trYbmzAqWFOnuKQxKmpHYRl74SfqW5DVp2AjbmEdB61unxLZbfctxBAAAeZZocnvv3r3q6uqq6Kl9/vnna968eRo1alSSRWloBx10kNasWaObb75Z3d3devHFFwdN09TUpPe///1auHChWltbUyglACAPgiRFVq7u1/Ib/CXNgKzp7fOf9C1xOj+yPP57I2xjnrnVt589r3Jf24+jVP1YchwBAEBeJZrcfvzxx/Xmm2+We23PmjVLCxcuTLIINTnyyCMHDdcRhbPPPltnn3125Mv10tTUpM997nOaNm2aNm7cqBdeeEGvvvqqhg8frjFjxqitrU1jxoxJtEwAgHzyk+BeubpfS5buLL8msY28aWs11DmtODREkPi1nh+d07KdLGyEbcw7p/rWMAq68IKBaTY+UTmP32PJcQQAAHlkmAkOdv39739fX/3qVyVJ+++/vx588EENGzYsqdUjZVu2bEm7CK4Mw9CBBx4oSdq6dWsuxoBH4yJekVVuwxnc+j2THtvIFa96trcv3BjxYedLaj3W+ZLcxqzvz6yy17cLF4zUzOkjdN2y12uubxt93yJ+tGURlSSuIcQr8iYPMTt69OhIl9cU6dKq2Lp1q6Tijm5rayOxDQBAHeloNzRn1sCNwoobTZ02tVCRaJk7m8Q28i1s0i+JZOGqroLmzTfV3RPsJqa7x9S8+aZWdRWf35LUNkZV3kZkr2+XLN2pD/597YltiR7bAPKBawiAkkST2/vvv3/574MOOijJVQMAgATYEy7btw98tnDBSHW0J9r0ABpGb19xOBGp+MWS35t9aw/grjXF5SQhb+XNInt9u20bv5AB0Bi4hgCwSvQO89BDDy3//cYbbyS5agAAkJCOdkMtLZXvjRplaOb0EekUCGgAba2DfzlR7WbfaSihpHrt5q28WeVU37a0OD/UFwDqBdcQAFaJJrdPPPFEDRlSfIblc889l+SqAQBAQrp7zIoe21KxR+HK1f3pFAhoEE5DA7nd7LuNkZ+kvJU3i5zq2+3bFfhn+gCQN1xDAJQkmtwePXq0Tj75ZJmmqZdfflm//e1vk1w9AACImf3mwdqjcMnSneruYXxDIE5+bvazdJOft/JmiX2/jBoVrBcjAOQd1xAAUsLJbUm65JJLNGJE8WfJV155pQoFbnIBAKgHTjcP96xr0tzZAzcQy28g4QLEzetmP4s3+XkrbxbY98vCBSP14M8PqqhvSXADaARcQwAYpmkm3uL54Q9/qMsvv1ySdPrpp+uKK67QsGHDki4GErZly5a0i+DKMAwdeOCBkqStW7cqhdMC8I14RRZ53TwYhqHb72jWkqU7HT/Pit4+M9TYi2HnQ3bVSz3r9EsK6xAWWTsP81betNj309zZhi684CBJxXi95dYCyRxkWr3UsY0oy22luK4hxCvyJg8xO3r06EiXl3jPbUk655xztGTJEjU3N+vuu+/W6aefru9///vavHlzGsUBAAA18NMrZub0EVq4YGT5ddZ6FK7qKmje/OBl6u4xNW++qVVd/BIN2WPvzZb1RHHeypsG5/q28pYuyDi0AOBX1ttKXEOAxpV4z+0pU6aU/3799dfV3198uJRhFCuakSNHatSoUeXXfhiGoXvvvTfagiJy9NwGokG8Ikv8JLatMXvdste1/IZs9Sjs7SvedJX4LZN926+/1qAHd52ot3r2tKmFipv8lhbpnnWp9HHxJW/lTYpbfesWr/wcH1lVb3VsI8hTWynqawjxirzJQ8xG3XN7SKRL82HTpk0yDEOmacowjHISu7Szd+zYoR07dgRaZpBEOAAAiEZvX/DESUd7k0xz4CfzK240NX6cUk0Kt7UamjNLFWUqltW9TE5JIxLbyKLuHrPiJl8q9mbr7jEzmejMW3mTEq6+LX6epfoWQD7lpa3ENQRoTKl1gbAnpEuJ7qD/AABAOtpaDXVOK/4dpEeg9WejndOykWgJ8jN+ekMiL5zGHy3J4lAVeStvkuqpvgWQT1lvK3ENARpX4j23Dz/88KRXCQAAYjKjs0knTQz+kKCOdiNzPQidejla35dIbCM/3GLV+r6fnndJyVt501BP9S2AfMpqW4lrCNDYEk9u33///UmvEgAAxChswiSLiRavmzYS28iD3j5TG5+Qa6y6xXiayU+vc8tPIqWR1FN9W9LbFzxhX8t8QBrqKc6z1lbiGgKAJ7MAAABYOP3s9rSpBRLbyLxVXQXNm189seAU4/Pmm1rVVUisrCV+EiFBfgqPfCnFbNDj2d2TXswCQdVjnGelrcQ1BIBEchsAAGAQ+42Q9eFEJLaRRb19prrWVL7nFav2GJekrjXF5SQlSA8/khP1xxqzQY6nNW6SjlkgqHqO87TbSlxDAJSQ3AYAAHDQ0W5UPIxIKj6ciMQ2ULvevuA/XXdKTmQx4QN/2lqDJ5uckllZG7IBsKr3OE+rrcQ1BIAVyW0AAAAH3T1mRS8kqdgriZ4+yKK2VkOd0yrf80qi2JMnktQ5Lbmxma3lDdLDz5qcSLK8iEeQ3pQ89wB5Vc9xnlZbiWsIACvDNE3u0JCILVu2pF0EV4Zh6MADD5Qkbd26VZwWyDLiFXmTx5i131y2tDA0SSPJY8yWVHugpOScPEnrgZL19JC1tOQ5XkuqJfTylvCDt3qI2TDqLc6z0FZK4hrSqPGK/MpDzI4ePTrS5dFzGwAAhBL2p5xZ/wmo083lPeuaGKsRoSV5rrS1Gp69BN2SJ2klisOul8R29gWJ3zAxG2Y9YcuHYDgmzmqJ86zJSlspzmsIcQzkR6Q9t6+77rpB71144YVVp4mCfT3IHnpuA9EgXpEFq7oK6lrj7+bLGrPXLXtdy28w1TlNmtGZve/Y661XFcKJsp4Ncq5YlWKtlnMlC73qEL8stgvCxv2iywp66OGB19ViNs3zC878HBOnmG2kY5L3urkR2krWOP7seU2+69hGimNkVxbbBXZR99yONLl93HHHyTAqK62nnnqq6jRRsK8H2UNyG4gG8Yq09faZmjff/01LKWZXru7XkqU7y+9ff222HpDk92asHm7a4C2qejbouVJij7FazhWnsbWDlAXZl7V2QVRxb+fUYzvt8wuV/B4Te8zecmuh4Y5JXuvmRmgr2eN47mxDF15wkCTvOpa6BVmRtXaBk9wMS5LUzsviQQIAoJ61tfp/MFKJPbE9Z1a2GvxBbsKCPBgKjS3MueIUi7WcKx3thlpaKt9raVFukgzInyjivrm58nOnmM3C+YVK4Y5JoSGPSR7r5kZpK9njePkNplau7vech7oFSFfkyW3TNKsmnEvTRPEPAAAkL8hNS3dPYVBiO0s3b719wXsXOW0/YyzCSbBzJfqebt09ZsXP3aXiz9/zkmRAPtUS95MnSbt3V07jFrNpn18YLMgxWbm6X8tvaMxjkre6udHaSvayL1m60zXBTd0CpG9IlAu7+eabI5kGAABkX6nhXmrQl/73Gndx7mxD552brQZ/W6uhzmlm4HFbrdvfOY0H3MFdmHMlqsS227iuTmUAohQm7idPkuuY224xm9b5BXd+jonTL7oa5ZjksW5uxLaSPY6XLN2pXbsq27HULUA2RDrmNuCFMbeBaBCvyBq3hr39/YULRuqTZ+/ObMz29pmhbrrCzodwkjhOcdWzfs+VOBLbbus6Y6p06SXBf8zptT85l5KV9XaB31i0J7aDnh9Jnl/wx23f3/o9s6F7bOc5Tmut3/N4fXCL17wcMzSerLcLpIw/UBLwQnIbiAbxiizy6oUkFRPbM6ePIGZRk1VdhcC9xqSB+OycJs3orJ7IjbOerXauxJnYdvt88iRp8VX+E9xe+zOpY4QBeWgXVIt7t8S22/x+E9xxnF8IptoxyeIvuuIStG6ut3jN6/XBMAzdfkdzxS8NqFuQZXloF+TmgZIAAKBx2McmtN+4zpw+IoVSoZ709hV/Di0FezCVNVnQtUapj/fpda4kkdguleGMqQOvH3pYWnRZIfDy7fuzXo4RoucV99US207zu8VX3OcXgvM6JgsXjFRHe2OkJPzWzXl9CGM1eb8+zJw+QgsXjCy/pm4BsqUxriQAACB2He2GWloq32tpUcPcuCJeba3Bb/qdkglZGPbC/VyJP7FdcuklTZo8aeC1nwR3tf1ZT8cI0XOK++bm6olt6/x+E9xxnF8Iz+mYjBrVOF98B6mb6zXBXQ/Xh5nTR1C3ABnF3SYAAIhEd49Z0ZNFKvZs6e7x1yMUqCbITX+Wf97tfq6ET2D09gXf3sVXDU5wX73Y+Xz1uz/r5Rghek5xv3v3wN9+jr9TfNl7csZxfqE2Tsdk2zZTK1f3p1OgBIWpm/3EeR7l/fqwcnU/dQuQUUPSLoDVs88+q40bN+q1117Ttm3bZBiGWlpadPDBB2v8+PE65phj0i4iAABw4DWm5vIbTA0f3t8wPbQQr9LNbSneSv/nZdxSr3PFaVv8ams11DnNDDye6eKrmrToskK59+zau6XDDjNr2p95P0aInp8xt/0ef2t8dU5TRU/OuM4vhOd1TJYs3aldu+p7zO2wdbNXnOdZXq8PK1f3u465Td0CpC/1B0r+4Q9/0K233qq1a9fqjTfe8Jz2gAMO0BlnnKH29nb9r//1vxIqIaLCAyWBaBCviEpUT6x3uwmxv79wwUh98uzdxCwi4Tfu3G6KveI/rnq21jL7Efa8vnpxQWvvHngdRdmS2F5kv10QVxyEvRYRb8lx2/e3fs/U8hsa65hE1eZKWlzlztP56havWSxro8vreRa1rLcLpOgfKJlacnvv3r26/vrr9d3vflf79u0btLMNoxhYTu/vt99++vznP6958+ZpyJBMdT6HB5LbQDSIV0QhqifWV2vY2z+fO7u+e2ghWQsuKWj9hoHX9t6gbvFtj2O7OOrZoOdKGjfJ1XrXhilTHMtEpSy3C5KK+zycX43Ga58bhqHb72iu6AnLMcmeqNqK1aYryeL1oVo7lrolO+KO1zzJcrugJOrkdipHbteuXZoxY4ZWrFihvXv3yjRNGYZRTmhLxaS29QCUPjdNU3v37tWKFSs0Y8YM7bYO1AYAAKqK6on1Vy8uVG3Qd7Qbmjt74L3lN9THg5GQvt4+syKxLQVLbEvFOE5iHFM/N79ZeIiYvQxRJBniWCbyIam4z8v51Uj8HJOZ00do4YKR5dcck2yJqq3odY3N+vXB6ReI9oekU7dkQxLximxLpef25z//ef3iF78oFuCvCWtJOvroo9XW1qZ3v/vdOuCAAyRJb7zxhv7nf/5Hvb29eu655yrmMQxDf/d3f6cbb7wx6U1ACPTcBqJBvCIKQXua2KefPEnlMXqrzU8PLcTFHpclLS3SPesG9+HwG/dR1rO1nmtpnCunTS1UJBnc9mfay0RRFtsFScV9Hs+veudnH1tj9rplrzfcECV5kdT5lcXrg1Nie+b0Ea51LHVL+rgeDMhiu8Au6p7biY/pceedd+oXv/hFxbAjH/3oR3XxxRdXfWDkM888o//7f/+vfvrTn5YT3L/4xS9011136cwzz0yg9AAA1Ac/D/QpsTf+zpgqrV038LmfxmDpYZKlBPeKG02NH1c/D0hCOjraDT32uFnxRYtU7P3V3VPbQxGj0NsXfJ1O52aS50p3j1mRZJCc92fay0R2JRX3eTy/6l24Y9Ik0yxwTDKolrZikC+osnZ9sMfx3NlG1YeiU7ekL4l4RXYl/nXY8uXLK3peX3755Vq2bFnVxLYkHXvssVq+fLkuv/xySQM9uJcvXx53sQEAqDt+fkrp1Pi79JImdU4beO23MThz+ojyECWd02jwo3bdPYMT2yXWeE7rJqat1Qh1rljPzSTPFafxT0vC/tQ6jmUi25KK+7ydX42AY1J/wrYVw/zyIivXh8Fx7C9tRhynL854RbYlOizJ008/rTPPPLPca/uzn/2svvKVr4Ra1r/927/plltukVRMct9555067rjjIisrosewJEA0iFdELewT6/0+Wdwes4/3Fmjwo2bVhspxe9/PTUzU9azfcyWq+cIIWw8kvUwMltV2QVJxn4fzq9FU27duMcsxya6o6/M8XB9K8Ri0jiWO05eH+IpTVtsFVrl+oOTTTz8tqTgUyZAhQ3ThhReGXtaFF16oIUOGlBPlpWUDQL0I+0ALHoSBoJx6OZw2tfrDIqs13N1ikQZ/tOq9rnAqp9PNyeKrmiriuCRoYjsOYWM+7cS2FP5hWXEsE/mSVNxn/fxqRH737foNe0LNl5frVxzSuuaHbSs6ifL6EOf+oG7JryjjFfmQaHL7L3/5i6TitwhtbW1qsf7uJKBRo0bphBNOKH8DUVo2ANSDVV0FzZsf/Ga/u8fUvPmmVnUVYioZ6pXXE+vDIBaTUe91hdP2Bbkptpo8yXncxUbnpxdT0GRDHMsEUF+uX75T53duV3dPsOtQXq5fcUj7mu/VVozyIbB+rw9p7w9kWxTxivxINLk9fPjw8t9jxoypeXnWZViXDQB51ttnqmtN8e8gN/vWxmLXmsbu1YJwOtoNuX3vTCxmT73XFU7bV8vPSR96WCRPbYLsT7/JhjiWCaC+9PaZWraiX5K0/Ib6u37FISvXfKe2YkuLvy+Po7w+ZGV/INtqiVfkS6LJbWsyeseOHTUvb+fOneW/DznkkJqXBwBZ0NYa/GbfqbHIT+IQlNMT662IxWyp97rCafuq3RTbt89uxY0mN7J/1dsX/IsCp2SDdX/GsUwA9aet1dDCBSPLr+vt+hWHrFzzndqK27dX//I46utDVvYHsi1svCJ/Ek1uH3/88eUxsp999tmal/fMM8+U/37ve99b8/IAICuC9GZrlAdjIF5eT6y3Ihazpd7rCrdhRvwmtu1xPHECY2GWtLUa6pxW/DtILFiPSee0yv0ZxzIB1KeZ00f4TnDn8foVh7Sv+V5txWrJ5TiuD2nvD2RbLfGK/Ek0uX3EEUfopJNOkmma+tOf/qRf//rXoZf161//Wi+//LIMw9CECRN0xBFHRFhSAEifnwZbdw8PxkDtnBr896xzfjif5BaL3DSkxV9dkd/j4zWOdolTYtspjtdvoLeO1YzOJl1/bfBY6Gg3dP21hmZ0Dr6ViGOZAOrTzOkjNHd2/V6/4pDWNd9PW7FawjCO60O9t4EQThTxinxJvPX4+c9/vvz3v/7rv2rr1q2Bl7Flyxb967/+q+MyAaCeODfYig8/Wbm6X8tvoKGG2oR9OJ+1QchNQ/q8bu6iOj5hh4qIYoiJINsneccxNzOVwvaS9povjmWmLc34T0K9b1+jKR2XoMcn7Hy16Gh3TzjVcv2qJaazfj4kcc23CtJW9NODOwyv+ZLeH8i2KOMV+WGYppn4kVy8eLG++93vyjAMjR07Vt/+9rd13HHH+Zr3qaee0he+8AU9//zzkqTp06frsssui7O4iMiWLVvSLoIrwzB04IEHSpK2bt2qFE4LwJP9Ij1qlKFt22iooTZ+G/xe4xi3tFR/+jh1bHKcfoIZxdPhV3UV1LUm+Pyl8nROUyQ9cqttn+Q/jr22hZiFVVbi302t8Zr17UMwpeM5cULx1yp+j2vpeJbmi/O4OsVslNevWmM66Pqs8yZ5PsR1zfdaRxTX2LjEtT9oE+RHnuI1TnmI2dGjR0e6vFSS25K0evVqLVmyRHv27NGQIUN0yimn6BOf+IRaW1sHPRzy1VdfVW9vr370ox/pvvvu0969ezV06FBdfPHFmjFjRhrFRwgkt4HauCUY6+1ijGQEbdRVe1Cf1zKoY5MVdV3R22dq3vzgNwD2clx/bTQPbvKKxaBxTMyimqzFv5Na4jUP2wf/7MezJOw1Pq7j6hazUVy/oorpWuZN8nyI8/6g1rZiFhLcUZSFNkE+5DFe45KHmM10cnvKlCmBpn/99dfV399fLIgxEETDhw/X/vvvL8Mw9MYbb2jXrl3lz0zTlGEYGjFiRHlnGIahe++9N4ItQJxIbgO1O21qoaIHQkuLdM86ekshmChv/Eq8YpE6NnlR1xVZu2Gwb1+QdfhJQhCzsMpa/NvVGq9Z3z4EEzS5l0bnCa+YjeL6FeUX+Hk4H+K4P8jzF19R7w/aBNmX53iNQx5iNurkdqQZkU2bNunll1/Wpk2bqv57+eWXtWvXLhmGIcMwZJpm+V9/f7/+/Oc/69VXX1V/f3/FZ6UkeH9/f8W6AKDedfeYg5I527fzcDQEF8UT6+2IxeyIo64IMkZh3Df6TtsXhHVbOqdle5xnZEOW4j8O9b59jcbtWu3nQXslaR3XqK5ftcZ0ns6HuO4PomgrpnGN5X6pMeU1XhGdIXEs1NoLO855AKBReI25XXqfm0sEMaOzSSdNNGtuxFnHMyQW0+c13mStx6c0X2k5TstLIrEdxfZ1tBsaP46bGPiXhfiPU71vX6OxH88S63HNYmI7yutXFDGd9fMhzmu+FL6tmNY1Nu79gWzLW7wiWpEmtw8//PAoFwcA0OCG2tzZhi684CCtXN2vJUt3SqLBhnCCNuLcbuSs7xOL6Uni+HglC5JObNe6fXm7ientC/dlVNj5MFia8Z+EtLevkWM8jm33SnA/9riphx4ePE9WEttRXb9qiem0z4dq4tpn9pjyG5dh54sKbVRI4eMu79cQpPhASTQextwGgnNqqH32vKZyvF637HUtvyHfN9PIh2o3cl6fU8fGr5bjE8X6rL2jolh+tfXFvX1Zi9lVXQV1rQm+XaX90jmt2KMJ0Ug6/quJOl7T2L5GjvG4t93PA6GlZOPWGrPV2rJR1O+1xHTWznenMkW1z/J6HsbdRshamwCoJg8xm+kxtwEA0fHTEOtob/I9LiAQlr9Y9D9GJaKVxvGxLy/NxLZTeeop/nr7THWtKf4dZLus+61rTXE5iEaS8Z+GpLevkWM8iW33el5GSVpxu3J1f9VOGlHU77XEdNbO97iuiXk9Dxu9jQCgiOQ2AGRQkB4GNNgQJ2Ix29I8Ph3thlpaKt9raYn2577EX/GnskG3y2m/8ZPbaCUR/2lKcvsaOcaT2nan41mSVtxah9eT4q/fa4nprJzvcV4T83ge0kYAUEJyGwAyprcv+E/nnBpseezBhGwhFrMt7ePT3WNW9GCTij3aorpZTHv7siTITXkWxoJtBHHHf9qS3r5GjvEktt3peJakEbe9fabvxHZJrfV7LTGdhfM9iWtins5D2ggArEhuA0DGtLUa6pxW/DtIQ9HaYOucxoMxUDtiMdvSPD5OY5CWRNUbivir5CfpkHayoVEkEf9pSmv7GjnG49x2P2NuJx23ba2GLpgzQlLxQelx1++1xHRWzvekrol5OQ9pIwCw4oGSSAwPlASCsT91vKQUr+s37NHYo3YMile3+fx+jsYTNmb8zpe1OjbsOZDVc8dPuZymCTuf201tXDe7aRyvrMVsSW+fqY1PKPD+D3us/ZYpi+dFXJKOfz+ijNcsbF8WypCWqLfdLbE9eZL00MODp09qn1Zry1YTpN6pZZ9mMRaTqquzuO1OktgfWW0TAG7yELNRP1CS5DYSQ3IbiIZhGLr1e8O0bEW/5s42dN65wRuqaT3NHNmzqqugrjXBb06CxFKW6tgktjdrotzmaje1WbvpDStLMVtiPY6SBvUkdHvImZ/YbcTzIoysxn9U8Zql7XPqLZv2g/ySEtW2uyW23ZKUQZdfi6Tq2FpiOkvnQ1oa+Ty0ymKbAPCSh5itu+T2b37zG/3617/W008/rb/85S968803tXfv3kDLMAxD9957b0wlRFRIbgPR6NsoXXBRofw67E3O9dfm8+FLiE5vn6l582vvCVYtlrJSxya1vVkS5Ta79RiuNm8eb36zErMlTsdRUtXElJ/YbcTzIgy/cZ1G/EcRr1ncvjSTr2mrddv9zp/WPk6ijq0lpqXGud5V08jnYUnW2gRANXmI2bpJbt93333693//d7300kvl98IWxTAMPfXUU1EVDTEhuQ1EwzAM3X5Hc6AH8TRC4xvhBI2NMLGUpTo2ie3Nmii2WfJ3ox92nVmTpZgtcdqnPbdVPuSspUW6Z52/XvbVll3PxzeorO+fWuM1y9t32tSCa4zXu7DbHjQZmUbyMu46ttaYtsrS+ZCWRj4PpWy2CQAveYjZqJPbqdRI//f//l9deOGFevHFFyt2smEYgf8BQCOaOX2EFi4YWX6d5aeZI9v8PDiopB5iqdG2V6p9m8ePC5bYdltnb1/2GtZ54rRPrckGqfhz8e4eM3DsNuJ54VdvX/DtzVP8Z3n7unvcY7zehd12+/Es8Tqu9uNZkuW49RJFTNcyb173m5tGPg8B5Efiye1169ZpxYoVMk2znKA2TVOmaWrEiBE65JBDdNhhh/n+d/jhh+uwww5LejMAIHUzp4/Q3NneyYhGS0IgHD+JrXqKpUbbXqm2bW5rNdQ5rfK9oOvsnKa6HrIiKW4JmJaWgb9X3BgudhvxvPCj3uM/q9vnNNZvideXL/Wglm23Hs+JE4r/B03QlubLctx6iSKma5k3r/vNSSOfhwDyJdFhSUzT1Mknn6xXX321nNQ+9thj1dnZqQ9/+MN6+9vfnlRRkAKGJQGiYY/XW24t5OJp5sg+t5ipNZYMw9Dzv3+bJk4YGnsd29tn+r6pjGt7kxJkW0tq2eYw65OkH95Z0DlnBe9PEXZ9USjVs+s37NHYo3YEjtk4y+7083m3MbjDxG7ez4u4BDmm1mnDzhdEFO3YsOsuzVfr/FaNHINRbXvY41Lr8fQriXuvWmJSCpegTuN6F+W5Z9XI56FdXnIFccUC8icPMZvrYUkee+yxcmJbkj72sY/pjjvu0JlnnkliGwBCcuptd9pU54Q34MVPLIXR3VPQ+Z3bdf3yndUnrsGqroLmzfffkyjP507QbXUTZJvD3Pis6ipoydLgP1/u7ik+5HBVV6H6xDG5fvlOnd+5Xd09wcoQZ9ndxoVdcaOpntuiuXHJ83kRJ7/xbz83g3zZlmbMh01stLUaoesjp232SpwFGT4nj6Lc9tLxDHpcw86XRbXEdF6ud1Gee/bPG/U8zKu4YgHIi0ST288995ykYg/u5uZmfeMb39B+++2XZBEAoC7ZG5rWsfEaMQmB8LxiqSTIjUx3j6nlNxSnXbaiP7ZxKHv7THWtCV4+uzycO2G31S0xGtc2R1HOrjVKZezS3j5Ty1b0S5KW35CNsjslG6I8V624poST55gPK8pt9tMjtF4Ta4287fUgjXM/rnUSi/nTiNcewC7R5PbWrVslFbvIn3jiiRo1alSSqweAutbRblSMhScVx8YjCYGg3GIp6I2M/QZp4YKRsfUGa2sNfqPlluyVsn3uRLGtc2bFX19EVc40ehC2tRq+H9pbEmfZ3ZINUZ2rTrimBJfnmA8rqm3e+IT/B9fWW2ItyDAP9bbt9SKNcz+OdRKL+dSI1x7ALtHkdnNzc/lvhiEBgGjxNHNExS2WJP9JM6fE9szpIyIvq1WQGy2vxLaU/XOnlm0tzZdEfVFrOdNMpM6cPsJ3gjvOsvf2uS87yLkatEcW15Rw8hzzYdW6zePH+U9se60zj70Ovc5vN/Wy7fUmjXM/ynUSi/nWiNcewCrR5Pbf/M3flP9+4403klw1ANQ1nmaOqFSLJal6gtu+jLmzjdgT2yV+GvfVemx7zZslYbbV6cGDcW9z2HJm4UZr5vQRmjs73bK3tRrqnDZ42UHO1c5pwcaf5ZpSmzzHfFi1bLNbjAdZZ9AYz4pG3vZ6lMa5H9U6icX8a8RrD1BimAk+NvONN97QBz7wAe3bt0+HHHKIHnjggaRWjQzYsmVL2kVwlYenyQIl9ni95VbnB33ReEFQbjHjJ0HqNe1nz2tKvI71uy1WeT134jpuUW9zkHKmvb+zWM/29pnlpEGQfTl+XG2J7Swfp6xLal9mqR1byzZbYzyIsPNlSaNte5ZiNg5p1KNRrbPRYtGPvMUr13HkIWZHjx4d6fISTW5L0he+8AX96Ec/kmEYuummmzR58uQkV48UkdwGomGN1+uWvV5+WJ80uJFCIwZ+VYsVvz2AnR48l1Qda7+xcup96vTQPWtZ3ea1fp7FG7hq2+qV2HZbRhIJbreYSZtTzGal7GHOVb/linPZjSqJuMlaOzYr5wqyK2sxG4c0zgPOvXjkMV6jiAWn9q6fNnDY+aLAlzNFeYjZqJPbiQ5LIkmXXHKJDjjgAEnSFVdcoR07diRdBACoCytX93smtiUe9gJ//CSsnGKpNG1JmjdQq7oKmje/Mr7tZXZLbEvS7t2V54XbudPdY2refFOrugrRFT4CXtvqJ7HttIwkhijJ0013Fsoe9lz1cxzjXHYjy0LcJK0RtxmwS+M84NxDSa2x4NSudnrPzqmdnFTb2U/5nGS1bY9gEk9uH3744VqyZImGDh2q3/3ud5o+fbo2bdqUdDEAINdWru7XkqU7y6+9GikkI+AlSE9MtwS3dTze0uskb6B6+0x1rRkokz3BbS+fk641GvQQJKftLW2z0/Rpc9rW0utajnEcCe60YyasNMte67la7WY0SzFSb/Ic82E14jYDdmmcB5x7KAkbC07taq+2dom1LVFqJzu9Fwc/5XOSVPkQv8ST25L04Q9/WF1dXXr729+u3t5e/X//3/+nL37xi/rRj36kp556Si+99JJefvnlQP8AoFH09pm+E9slPM0cTnr7gg8x4BRL9h7R27cr0WRXW6t7sq27Z3D5nEye5DwusX17S+bMMjL380Wnbd2+3X9iuyTu+sKtnHlIkKZV9qjOVafjGOeyUZTnmA+rEbcZsEvjPODcQ0nYWHBqV298wvuB8k5fkm98YnAbNK62s9e9gBunMmetbQ//Eh9z2+rJJ59UZ2entm3bJsOo7SEqTz75ZIQlQxwYcxuIhmEYuvV7w7RsRb/mzjZ03rnBHxTWOU2a0ZnK95vImFVdBXWtCf5zVacHM6Y95ra9TJMnSQ897F4+O7d9kIdxhv2MLx72GEdZX+RlPNAsjrld67nqdRzjXHajY8zt7J7nSE/WYjYOjLldP/IYr1HEgt8Hk/t9L0u/cstD274WeYjZ3I+5LUl79+7Vv//7v+uf/umftH37dhmGIdM0a/oHAI1k3tyRurmrRR3twarxjnZD119rkIRA2YzOJl1/be0NujmzDN2zrinV4QrsvUmtie1S+SZPqpznnUcO/O1U3jw0fp3KaD8WYURdX/gpZ1aHuMhC2cOeq36OY5zLbmRZiJukNeI2A3ZpnAeceyiJKhb8PG/HOmSf9bO02s5+hk7LQ9sewSXeEt23b5/mzJmjNWvWaO/eveX3a+m5DQCNaOKEoaHmq9efW4X9SXwSP6XPctmk4DHh1Sh0blQGf0BL2G3vaDcGJbAnTyq+391jViS8JenFl1QxvX1Ik6w3foMfi2D7Nar6Iu5yxqm7p5CZsoc5Hr19pq/57NP4PQedlp3VOs++fL/rCzNfnmM+rEba5qzGeNTrZbih4LzOg/HjvId2sPrhnQNtp2rHodZzz23IqmrCzof4RF0P+0lwW9dlnca+/qR0tBs6Y+rA6yBte+I3vxJPbi9fvly//OUvJancY1uS/uZv/kYf+chHdPrpp+uss84K9O/MM89MejMAABmS5adjZ7lsYfhJ+NobwstvMLVydX+gdYTddqcE9kMPS6dNrUxQWhPaDz08OMFtnz5vie2SLCSU8lJOJytX92v5Dfksu5RO/ZPVOs9eLr/ltJfLTznzHPNhNdI2ZzXG3eStvHnmdR6UjkPp/RKn8+DCBQUtWSotuqxQ9Tg4DRP3m4cqX3ude07x4SdmnMpFzKQrrnrYaZ6e2wbP03NbNjqFrOoqaO264G174jffEh1zu7+/Xx/+8Ie1c+fOclL73HPP1axZs3TYYYclVQykhDG3gWgQr5V6+8zyzYLkvyFlbwBef230DxHJctnCCNKT2b7tkrRwwUh98uzdnjFby7ZXG3PbXu6g02dJ0F7lafVCz0s57QzD0O13NAd6eG9Wyl6SRv2T1TrPXq4zTpfW3j3wud8xOc+YKq1dN/C5UznTiPm02wV5Pc/DyGqMu8lqedOO2Th4xbXTcZCce7j+8M5iYtuJ/Tg4JbZLFi6Qzjmrsi9jtTptzixD48epasw4xYf94YFZabtGIQ/xmkQ97BVvdmnV6/ZzzW/bPqv3XmHlIWZzPeb2ww8/rB07dkgq7uyLLrpIX/va10hsAwBCy/LTsbNctqB6+4I1gu3bLklLlu70/LlfLdvuVL7FVzWppaVyupYWuf4886GHpZEj3afPiqDHQnLudZPEEBB5KKeT3j4zUGJbyk7ZS9Kof7Ja59nLtfZu9+GI3Mo1edLgJJDTUC55jfmwGm2bsxrjbvJW3ryqdh44HYfSdNb3evtMnXPW4OeDlKa1Hgf7Oq0mTxqc2JYGn3tr1xW/7LOWYeMT3j3LneLDntgmZpKVVD3c0W44tqu92tpJs59rDz0sNTdXTmMvH3VefUg0uf3CCy9IkkzT1KhRozRnzpwkVw8AqFNBfmKXdI+xLJctiLZWQ53Tin/7LZd92yVp4xPxbLtT+bp7zIonw0vFJ8Vb97+1jBMnSDt3ek+fBWGOhVS5rZ3T4h9/Py/ldNLWauiCOSMkSXNn56vsbuWRkql/slrnOX2Z5Xe8fXvPL7dy5jnmw2rEbc5qjLvJW3nzyM95UG3sYut5cOIJg+d/7PHKY2Zdp9XkSdLiq9zTPPZz79JFgx80aC1X6b3uHtMxPqzzlN4jZpKVVD3s1q6u1tZOmv1c27278nNr+ajz6keiw5LceOONuuaaa2QYhk4++WStWLEiqVUjAxiWBIgG8equWgMlzQZMlssWhN+H01nd+j3Tc9ziKLe9VD77MltaKhvf9nVcfU2holdmtemzIMyxqGW+sPJSTqtSPbt+wx6NPWpH4Ho2zbI7SaP+yWqdVy1xXe21n3ImHfNZaBfk8TyvVVZj3E2WypuFmI2Dn3h22s/jxw0kFr2GfrAnrhddVhhUX3kltr3K6idxbdVIie28xGuc9XC1drXTe2nHg/38aG6uTHSHub7nRR5iNtfDkhxyyCHlv/fff/8kVw0AaABevZOiumkL+9Pp8ePcf+aZtRtgL2EazR3tTVq4YGC8jzi33SmxPWeWoXvWDe6ZZC2DfbgBr+mzImxCKOlEUl7K6WTihKGh5stC2a2SqBuzsM4w5bL34K41sS3lO+alcNe5tlYj9Hx5FVeMh21n+BlSIK5zMmyZ12/YE2q+rPITz07HYeMTxb+djoO9flp0WfFhd7Uktp3KWq1nuVUjJbbzJK5rj1Nctn9m8Dztn8nOQ4O7ewY/YH73bvfrPfGbf4n23H700UfV0dEhwzD0wQ9+UKtWrUpq1cgAem4D0SBeqwvaa9evVV0Fda0JPn+pPJ3TpOZmI5ayZVkpZleu7q8YxziObQ/aM61a8ipPXzwgOvVaz8ZVN2ZtnWHKZe/RZX+d5XM/yniN4jo3ozPR/lOpizLGk9j/UZ+TYcpsfWjv9M8Zmv65bJ5bcQpyHOyJbMOQrKd50MR2LeWqVtZ6VK9tAj/y2KO/WlvfqQd3VOdPVuQhZnPdc/vEE0/U29/+dpmmqb6+Pu3bty/J1QMAGoS990kUDfDePlNda4p/B+mJYG1gda0Z3IO7kW4OZk4fobmz49t2P4lop16bQabPYg9uwK846sYsrtOPamNy5iWxHaWornN5eThkVKKK8aT2f5TnZPgyF8pfdq++KT8PFI1SkOOw+KrKh0zGldiuVi4/ZUX98DvGut8x25PgVObFVzV5Xu8fejh7z9dBcIkmt/fbbz+dddZZkqQ333xTd955Z5KrBwA0ELcneodtgDs96b5aQ8jt6dtRly1POtqbYtn2ID2sO9orf+YrFW8OvaYnwY16kUb9k9U6z6lchq1IWShnUqK8zjWaKGI8yf0f1TkZtszW53DMnd2YMSMFOw6Lr2oaVD8ZRjw9Tt3KlcV6HPEI8vBQP0PaJNF29roXcIrp5uaBv2nb51/ife/nzJmjd7/73TJNU1dffbWef/75pIsAAGgAbk/0rqXhEiTJ6dXAiqNsedHdU4h823v7gg0d0ts3eBy+hx727u3mdOwbsacZ8i+N+ierdZ5Tuey/3M1COZMU1XWu0UQV40nt/yjPyVrKvHDBSHW019dwAEEEOQ6LLisMqp9Mc2AM7iTKlcV6HNFzalePH+c91IhTPeD0vKG42s7V7gWcYto+Bjdt+3xL/Erytre9TStXrtQ73/lObdu2Teeee67Wrl2byTFgAAD55DReYEmt38z7uYmrltiOq2xZt3J1f0Vvrai2va3VUOe04t9+bu6t05catZ3Tqj9Qx3rs/UwPZE0a9U9W6zynMbetGrlHV63XuUYTdYzHvf/jOCfDlHnhgpGaOX1E4HXViyDHwWnM7RLrQybjLpefsiL/nNrVftraTu3kpNrOXuXzimnrQ6Vp2+dbog+UlKS77rpLUnFQ8+XLl2vbtm0yDEOHHXaYPvShD2ns2LFqaWlRU1OwvPuZZ54ZfWERKR4oCUQjznjt7TNDXdTDzhcHtxu+qG/Ew6wnqbJljfXBUSVBt91PjAWNw9L0YedDeHHXNbUu317PPt5bKC8vyLKt06YdN2nUP2nWeV77u9rDptzez1LdbN0+r3j1mq/aZ0kevzjrhGrTuH3uZ76NTzj3ZoxiH8Wx/+M+pn6XP3e2oQsvOEhSY957BTkOjz1e+Wuz0hjb9oS3n7G3q8W034cH1vLQwDzeazRqrsBpn4etc5M6fmGvY2ecLl26qH5+RZKHmI36gZKJJ7ePO+44GbbBokpFsL8fxFNPPVVTuRA/kttANOKK1zBPu5cGGg2d06QZnek2CqrdnMWd4PZ6enzSZcuSW79XOb6m/QbM777JQoyhdnHXNVEsf+b0/cr17OIlr2v1TabmzDK0e7fpe9nW5TU3G6nGcBr1T5p1nlcM+E1su32ehbrZvn3WdoE1Xt223SkO3T4Lcp2Lanv88lMnVFu22+fVlm3fL1I8MR7l/k/qnPRT5s+e19Sw915Bj4OVvf0UJMFd7Vzwm9j2+rxazOT1XoNcQT418r1XHmI26uR2aneI1p1rGEY5sW2apu9/9uUAAMIJ/7T7gUZB1xrvMYvj5qeBEvWDAf0+6T6NsmWF/cFR0uCnkntte5ZiDLWLu66JevnrN+zR6pvM8vL8Ltu+vDRjOI36J806zysGgia2pcqfLEdZzrC8ts8er27bbo9Dr8/8Xufi2B4vfuqEast2+7zasv0ktqVoYjyq/Z/kORl3zORZmONQ4pS4XnxVU0X95DZESbVzwW9i+4zTB/4ufeY3ZurhXgP50cj3Xo0qleS2NTHtlLAOuhwAQG3CPu3e3mhI6+eCQb55jyPB7fX0+DTLljb7tn/4Q0PLf9u3zWnbF11WyEyMIRpx1zVRL3/ihKGaO9t5XW7L9up1l3QMp1H/pF3nucVAkMT2nFmVy8hSgtt5+4rJLHu8um27NQ79nF/VrnPRb080dUK1ZTt9Xu264zexXRJVgruW/Z/GORlnzORVkOPw2OOD9/mJJzhP6yfB7XUuBBmK5NJFTYOWY53Hvmy/ZXCTpXsN5Efa7RCkI/FhSe68885YlnvWWWfFslxEh2FJgGjEGa9+GwNZ+hlXb5+pefODl8W+DddfG67B7JbImjOr+GTxNMuWJvtxKT046rplr1f05Pb7c9xG7+1Vb+Kua2pdvr2eveXWgmNc2pddLbGdZAynUTemXR97LdPqjNOltXc7z+d1PM+YKq1dNzBtmnWzvWylOraWePV7nlSbPow464Sww0D4mS6JGK9l/6d1TlYrc6PdewU5Dj+8s6AlS52X43Uc7EOULFwgnXOW8/BDJfY6zant6lRep/iwjz/vVtY83ms0WrzmWZbaIWnKQ8xGPSzJkEiX5gNJaADIrtLFv3RxL/2f5fHJik/H9j8Obol1W8M+HdtrXMkVNxbHPO2cplTKljbrcZk729DM6SMkSR3tTTLNgmuMdbQPfnhS2jGG6MVd10S9fPvyrKzvZSWxLaVTN6ZZH3st06pUroMOKpR/Im//zK1cMzqbdNihZibqZvv2lR7Y+8mzq2+7FD7BZL/OWcsS5fZEWSdUW7bTdWfyJO91B1m/vQxBYqfW/Z/GOemnzJ89r7Gu6UGOwzlnNemnPyvo8d5iHJ54guHrOFgfMnlC2+DEtjT4XFi7Tpo4QVq/ofJBe1ZuwzmUllMqV1urBr3nJI/3GsiPLLVDkKzEe24jmD/+8Y968skn9corr6hQKGjMmDE6+uijdcwxx0S2jr6+Pv3hD3/Q5s2bNWLECI0ZM0atra0aM2ZMZOuQ6Lldr/L4xOu8SyJe3RqVWW5sJh2LQfbR+HHhGkl5OU+8ytnbZ+qEtsEPjspjjMFZLeeevadX1HEQNs7c6lmv3sBuwpY9qjotjet0ltoGUdQ1Ue3TassNM599O+bONnTeuYO3Twq+7WnU03Gu0++y/aw7iet6lPsiqXPSb5nnzjZ04QUHSRqoY7NUb8QlSFl/eGehnKAOO58bpx7cl17SFDi2nMrlt6x5ageSK8ifRqhPvOQhZqPuuU1yO4QdO3boySefVF9fn/r6+rRx40Zt2rSp/PkRRxyh+++/v6Z1PPDAA1q+fLkee+wxx8+PPfZYzZw5U1OnTg21/EKhoFtuuUW33HKLXnzxxUGfNzU16QMf+IAuvvhitba2hlqHHcnt+pPXJ17nXVLx6tXzRspGYzMtQX/iXM/7yk894BSzTskEYix/orgONDcbsdY1Yeoyr3o2SII7bNm5vkYri9ezKI/xrd+rfHCvffus/G57mte5OI9XtWXbx2JPK1by2M4IWmbrUDorV++jzktYFurFLJTBD3IFyJs8xCzJ7RR1dXXpjjvu0O9+9zsVCoOfQlxSS3LbNE1985vf1M033+xr+n/8x3/Uv//7v2vYsGG+17FlyxZdfPHF+s1vflN12qFDh+qSSy7R9OnTfS/fa71ZlYeTP2sYzyo9ScYr4x8PlsexAuPitx4IMn5xtWUhO6K8Dth7cAddZtB1Vlt+tXrWT4K7lh7bXF+jl6XrWdTH2DAM3X5Hc3loEiu3h8N5rTcL17k4j1fQntpRrjtM+fLQzghb5oULRurov92lCy4qVJ232rKo84JLO9azUoZqyBUgb/IQs1Ent/l6M4BHHnlEzz77rGdiu1aLFy8elNieMGGCpk2bpunTp+tDH/qQDGOgkv/xj3+sf/7nf/a9/D179uiiiy6qSGwPGTJEU6ZM0axZs3Teeefp2GOPrZj+yiuv1A9+8IMatgr1iCdeN4aOdp52b8XTtyuFqwcKg/YhMZZPUV4H4q5rol6+0/KiWjbX13hk6XoWxzGeOX2ERo2q3JbS9gXZ9qxc5+I8XtWWnWasZGX/B1FLmZcs3amNT5jUeSnJQr2YhTIAyD+S2zUaOXKk3ve+92nkyJE1L+unP/2pvvvd75Zft7S06KabbtL3vvc9feUrX9EXv/hFrV69WnfccYcOPfTQ8nTr1q3Tbbfd5msd11xzjR555JHy62OOOUY/+clPtGzZMi1atEhf/epXtW7dOl199dUaOnRoebqvf/3reuaZZ2reRtSXII3qLPUugX/dPeagnzZv3666S9L60dsXPIadzpHevvrad0HqgZWr+yt+Ol+ajxjLr6iuA3HXNVEv32l5US1b4voah6xdz6I+xitX92vbtsr5S9vnd9uzdJ2L83hVW3ZasZKl/e9X2DLPnT0wzfIbTI0fJ+q8FGShXsxCGQDkX+aGJXnzzTf15ptvBu4dffjhh8dUogELFy7USy+9pPHjx2vcuHEaP368xo4dq6amJn30ox8tj7sdZlgS0zQ1depUPfvss5KKPyO45ZZb9L73vc9x+hdeeEFnnHGGdu/eLUl6xzveoXvvvVfDhw93Xccrr7yiU089VW+99ZYk6eCDD9aPf/xj158D3HXXXfriF79Yfj1lyhQtW7Ys0HZZMSxJ/crjuIB5xpjb6WEcXHde57nTT+adfipPjOVXLdeBuOuaPI657bYurq/hZPl6FsUxjnLM7Sxc5xp5zO0s7P+gwpTZ2i6Y/jlD0z/nfD2gzotPFurFLJTBD3IFyJs8xGzdjbn9yCOP6O6779Zjjz2m3//+96GG/DAMQ08++WQMpfOv1uT2f//3f+vCCy8svz7zzDN15ZVXes6zdOnSimTz5Zdfrs9+9rOu019xxRW65ZZbyq+/+c1v6pxzzvFcR0dHR0VP77Vr1+q4447znMcNye36lqcnXuddEvHK8XQX1dO3/TzN3knY+ZLgFh/2xItTYjtLMVZvT1hPanvC1Bt+5znjdOnSRcHjPmxd5lbPBklsuy07qW2QshuTUfPazlqvZ0mcP7WU0T7N3NmGzjvXedxov8tNqw7s7TMHjb/vp8x+1+t3PwdZd1Ss2xBkP4adL2pB112qY9dv2KOxR+3w/AKx1uNQb9f0KGShnZ+FMvhFrgB5k4eYrZsxt1988UV95jOf0fnnn68f/OAHeu6557Rv3z6ZphnqX979v//3/ypen3feeVXn+cxnPqP99tvPdRlWpmnqv/7rv8qvR40apU984hNV13HuuedWvP7JT35SdR40JqefRZ42dfDYumk3TlCdV6MyK+M7pinsjY51vgsXFLRkqbTosmBf6C66rDjfhQvie/ZDLdzqAWtiu/RT5KzG2KqugubND77O7p7iA+JWdWXr2CS5Pbt3V67D6TpgX4f1s4kT5BoHa++WFlwSbN9GXZd5JbbnzKpcnlWtMexnv7olPbMYk1HzivEgSRKn45TU+RO2DWXfvoULRqqjvfrtXbX4j+I6F1RpXwc9Z/3u62r1weRJldNPnuReH0V9XbLHWZAvRazbnmYiNuy6J04YOui9KO8p6u2aHoUstPOzUAYA9SWV5PaTTz6pc845R729vYMS04ZhlP+5vW//LO/27t2rn//85+XXhx12mFpbW6vON2bMGJ1wwgnl14899phef/11x2mfeOIJbd68ufz6Ix/5iJqbm6uuY8qUKRVjb993331V50HjsjdGsvizMnjzkwig0VmbH95Z0OO9xb8feth/gnvRZYXyT6Uf7y0uJ4u86oGFC4rPp8hqjPX2mepaE3yd1vOma40yM656kttjXZeV09AIK240teiywUnv9Rsq12VPOK3fIF292F/cR12XVUtsd7Qbg5ZnFTaG/ezXaknPLMVk1LxiPMgvBkqsy0i6PgjahnJKbM+cPsLxsxLrdmTpWu4U537PWT/72s9QF9ahSKTi9dm6P+LaX/V23YlKFPcU7NvBstDOz0IZANSfxJPbb775pi666CJtt1yh9ttvP73vfe/TKaecUtET+6yzztKpp56qtrY2DRkypCIRfvDBB+uss87SWWedpTPPPDPpzYjUs88+W7E/TjzxRN/zWqfdt2+fNmzY4Djd+vXrXefzMnz4cL3nPe8pv37mmWcqygrYdbTzxOu8CtLDjUZneOec1VSRsPOT4LYmtqVij7KsDk0iOdcDo0YV48U+PEmWYqyttfbevHNmGZn5GXOS22Nfl11LS+XDwuyJJKd1OSWc1t5d/SFTUddl3T3uvc/ty446we1nv1ZLemYpJqPmFuNBh8JxWkYa9YHfNpTTUCQDie3BPVzdtiMr1/KNT/if1u0cc9vXQcdwtl6f7fsjjv1Vb9edKNV6T8G+rZSFdn4WygCgPiV+Z9zT06NNmzaVe19/+MMf1k9/+lPdcsst+vKXv1wx7be+9S195zvf0X/8x39o/fr1uuKKK3T44YfLNE29/vrr2rdvn6644gp961vfSnozIvX8889XvLYmk6s5/vjjK17//ve/97UO+3xe7OVxWwcg8cTrvAr7tHt7o7OeerfEafFV/hPcTontxVdlN7EtOdcD27aZgx4omcUYq6U3bxZ/oZLk9ngldkvxcMZU53mDJpzc4iDqumz9hj0VX8h4ldlteVZhYrjafvXbW7leefXmlfyN8e4WA0nXB37aUM4xXrwm2OO12vZJ6V/L7dtjLUeQtuP4cdWXbT8mTp8vvqrJc3/Esb/q7boTlSjuKdi3RVlo52ehDADqVyrJ7VJi+z3veY+WL1+ud7zjHVXnGzZsmD75yU9q7dq1+vCHPyzTNHX33XfrK1/5StxFjp09WXz44Yf7nvewww7zXJbb+/b5vNjLQ3IbbuyNQmtvC75tz7a2VkOd04p/B2nMWxudndPSHe8xb/wkuPOa2HarB0qyHmP+evPm5yY4K9uz4kZThx1q6AhbM8c6tq1bWawJJ684iLoumzhhqKZ/zigvz++y7cuLM4b99Faud169easltp2WYT1OSZ0/fttQXjFuj1c/21fts7jZtyfovpbcy1ytPnD7vNr+iGN/ZaWezooo7ynYt9lo52ehDADq15AkV/biiy/qlVdekVQcQ/sLX/hCxXjOfuy///667rrr9OlPf1rPPPOM1q1bp1NOOUWnnnpqHEVOhHUsbEk69NBDfc9rn7a0f73WMWTIEF9fKARdBxqbW6PQ+n7p/3pqLNaTGZ1NOmli8CfDd7QbGj+OxmYYi69qqkhglxLc9velfCa2S/XArd8zXXu/+pFGjJXqKaf6K483wUlsj9e41CVOn5fGtq1WFr9xEHVdNqOzSRMnFP76vuF72fblhY3hMPs1DzEZNXuMW/mNcbcYiPv8CdqG8orxynj1t33VPoub0/b43dfVylytPnD7vNr+iGN/1dt1J6w47inYt9lo52ehDADqk2Han+gYo//8z//UwoULJUkHHnigfvOb31R8vmnTJk2ZMqVYMMPQU0895bqsBx98UNOnT5dhGJo4caK6u7vjK7gPH/3oR7Vp0yZJ0hFHHKH777/f97wXX3yx/vM//7P8+q677vI9NMm2bds0adJA17+2tjZ9//vfHzTdBz/4Qb322muSpAMOOECPPvqo7/L993//ty688MLy689//vP6whe+4Hv+kq1btwaeJymGYWjUqFGSivs0wdOiLnT3FCoSV3NnD/xE1s/nCIZ4rT+LLtun3zw08NowJOthff9kafFV+yVfsAC8znPDMPSDHw6rGJYkjXqgty/4DZV9u1paKh9slbf6LK7tcTr+f/qTdNc69/rp/ZNVEfe1lCXMsfWaLyv1rNN+leT5ZVFpv4XdJ3kX5zkbx7KjaEPFGa9Rn1t+p/Wzr8ePq5/xkK3q7brjxC1m476nCLpvk4h/ZF+SbYJaYk4K9wUA8Vp/stKO9XLggQdGurxEe25v2bJFUnFHH3fccYM+Lw1XUvLWW29p2LBhjsv64Ac/qHe84x3685//rA0bNmjz5s0aM2ZM9IVOwM6dOyteu22zk+bmZs9lOb1vn6cae3nc1lFN1MEbl1IlAH9Wru7X8hsGYmLhgpHlhxqVXHiBNHx4fzmxtfwGU8OHNw+aDsERr/Vh1Y3S7Au265e/2iOpMrH94Q8N1Q3LHMb2yBA/9cDM6cX/06oHrl++U8tW9DuWzcvw4f2SBrbNehMcdFlZYK+Po9gep+O/e7epu9b168MfGlqOa7sPvH+kPvB+OZbl/ZOH6MIL/NVvYY/tytXF/XDBnBGaN3ek63Rp1bNe55X1GNoNHz5Ct98hX9tWj+KI8biWHUcbKsp4jfvc8lpHtX0tSRdcVJ8xHmcMZ1EpZpO4pwiyb5OIf+RPnG2CWmNOCl5HEK/1r1HyBYl+5fvGG2+U/z7ooIMGfW5Puvb393sur9S72TRNPfFEgMdsZ8zu3bsrXgdJbtun3bVrV9V1BB0Kxu860HisF1LJ+2I6c/qI8s2IVLzpXrna+xwHGskNy1pk+45XhqFcJLazXg+s37BHy1b0B16nfdusRo0ycptgmDl9hEaNqgy2sNvjdPxPPGFIeX//8ld7NHy487yl+exlkaTfPLRX6zc4J8Wtoji2y1b0+1pXkrxiT3I+hiVLlu7M9LYlIcoYj2vZWa87kzi3qq3DbV+XpvezjryKM4azKMnzwc++rddrC7IrqrYq8YpGlWjPbWtStalpcF79bW97W8XrV1991fNbButnf/nLXyIoYTrsSf233nrL97z2aYe73EE2NzeXvyzYsydYpeV3HdUwLEl96e0ztWTpwMPv5s429Mmzd2vr1t2u83zybGnXLqP8c8AlS3fq6L/dxc+gAiJe69Oiy/bJfihNU5ox67XMDknitx6wxuynznkr8Xpg7FHFslnXuWtXv+dPme0/Xbbbts3Udctez+VPw7t7Ctq2rXLbwmyP2/GXdlfsb6/vxN0SuO+fLI09aoeqNR2iOLZzZxuD1pVmPWvfryXWbXM6hk6ctq0RRBXjcS076jZUHPEa17kVZB1u+9o+xFU9xnicMZwF1pj9+S+2asnSfeXP4r6n8LNvk4h/5EcSbYIo26rEK/KQL8j1sCQHHHBA+e8333xz0OfDhw/XiBEjyknY//mf/9HRRx/tujxrT/Bt27ZFWNJkjRxZ+fOPIMlte69v+7Ks75f2q32eauzlcVtHNVk8oZyYppmbsqapdXzxidVda4oPXjnvXMPXfitOV3yQS+e04nLY3+ERr/XB/vBI65jbv3lIuuTSfZl8mGSYesA0zVTqAes6peJPmU2z4PjQKK8H+FnH5/RaRlbZt62W7fE6/ueda2jDY2ZFXDc3S36bIL95SLrlVn9lqeXY+onbpOtZ+36VKrdtw2P7KvarfczYkiDX5noSZYzHtew421BRxmvc55bXOiS57uug68ibOGM4i5K8pwiyb5OIf+RPnG2CWmNOIl4xWKPkCxK9U37Xu95V/vuVV15xnGbs2LHlv9evX++6LPtQJGETrllgL/uOHTt8z2uf1iu5XdLf369CYXCPoFrXgcYzo7NJ118b/IniHe2Grr/W0IzO7CXrgKTZE9uTJ0m/+GmTJg88K1gPPVycLovyVA90tBvlxr9UvAHo7qls7HkltufMMnTPuqaqy8gqp5uZWrfH7fh391QmtqViYtsa106snwcpS5hjO2dW8LhNinW/2rfNul9Lx9C+XydPUma3LU5xxHhcy85L3ZnEueW0Dvvy2j/TGPEcZwxnWRLnQ5h9W2/XFmRfLTFHvKKRJZpZ+tu//VtJxcT073//e8cE6/jx48vT3H333a7jO//oRz+qGIrkne98ZwwlTob9QZhuiX8nf/rTnypeH3rooVXXsXfv3kDDuPhdBxpT2KEEGIoEcE5sl3poL74qOwnu0hPY3bidz07zWd8LUg9UK4NfXg1/r8T2GVMHkoV+bh6iLnetvG5mgmyPE/txtK/LHsfvPNJ5OXNmGVp8VfgkTpBj63YzF9XxCrsct/Ojo91wTWA7fZHw0MOqu+RXNXHFeG+fGWrZfmLAqQ4MO1+cY6VGcW4FXYd1eaV12rkdx94+f/s/qvmiEmc9HUQU9VcYcd5T1LJvk4h/wKqWmCNe0agSTW4ffPDBeve73y2pOO7z448/Pmiaj3/845KKY8S89tprWrRo0aCeww8++KC+/vWvy/jrk7eGDBmiiRMnxlv4GFl7q0vSyy+/7HteeyL8qKOOinwd9uS2fVkAgOC8EtslWUhwr+oqaN784DfR3T2m5s03taproLzXL9+pCy4qRLKsWjg1/E+bWnBNbE+cIK1dJ983u3GVOyw/NzNRJU6c1mVPWL/40uD5rD2NO9oNTZww8FktSRynY+t2MxfV8YrynLF+5pTAtm9b2J7veRdXjJeOZZhlh4ml8LFT0Pmd23X9cveHkNbKT70ZR6Kk57bB+9/rOJb2YdD9WDr/0qqzk6ynvcRRf6Utin2bVvyjcdUSc8QrGlHiYwJ88IMfLP/9wAMPDPp88uTJOuaYY8qv77//fv393/+95syZoy984Qs6++yzNWPGDL355psyTVOGYegTn/iE9t9//0TKHwd7svjJJ5/0Pe9vf/vbitduyW37+0HWYZ/WbR0AAH/8JLZL0kxw9/aZ6lpT/DvITbT1RrJrTXE51qfA17qsKNgb/k5jFkvFHtvrNxT/DtubK8pyBxWkl06tiZNqPeO8hiSx9jQuxkvl537K4tbz3npsvRLbURyvKM8Zp8+kygS2fdtq6fmeV3HFuPVYhlm2FCyWaomd0kPBlq3oj7Wu8ao3a02UBDl/vXrLW4+Z3/1oX3fSdXaS9bSXOOqvtEW5b+OMf8BJLTFHvKLRJJ7cLvXMNk1Td9xxh/bt21fxuWEY+upXv6r99tuv/N6OHTv0wAMP6Mc//rGefPLJclJbKvYGX7RoUXIbEIOjjz5aLS0t5ddOPdrdPPbYY+W/99tvP02YMMFxOnvPdut8Xnbt2qWnn366/PrYY4+teDAoACCYH97pP7Fd4pTg/uGd8Se421qD30Q73Ui2tRqaOGGoFi4YeGZDLcuKSke7Icvld5A5swxdeknw8TivXjy4d0waQzH19gX/+anT9vhJVFRbV2/f4J7HUvEhk/Z12ePOT1m8hpQpaWlxHoc6yjiL8pyRnPfr4quaBsWtddvCHsM8SjLG4xZF7CxcMDL2usap3nQ7t/xyOo7V1uF0HEvzWlXbj051R5J1dpZiOOr6K21x7Ns44h/wUkvMEa9oJIkntydNmqQvfelLuuyyy9TZ2anXX3990DQnnXSSvv3tb2v48OEViWypmPw2jOKTXA855BB997vf1dvf/vYkNyFyQ4YM0d///d+XX//pT39Sb29v1fk2b95cMd2JJ56ogw46yHHacePGVYy7/bOf/Uy7d++uuo57771Xe/YMjOE3ZcqUqvMAANydc1aTTmgr/u0nsV1iTXCf0FZcThKC9BKr1kNq5vQRmjs7mmVFobvHdO2xHXY8zokTpLV3Oy8naW2thjqnBS+HdXs6p/kbz7TauopfcAyez/qQSeu6nHrBTpzgXBanWHHqJb59++BxqOOIsyjPGaf96hS39m0LcwzzKM4Yty67JMix9Fq2n3IFXd/CBSM1c/oI3+sKy0/8BWU/jqVlVluH03F0qjvc9qNbYjvJOjvJejrocqX0r9O1iGPfxhH/gJdaYo54RSMxTNPMbGS//PLLuvHGG3X//ffr1VdfLb//7ne/W6eddpqmT5+emV7EH/3oR7Vp0yZJ0hFHHKH7778/0Pz33nuv5s2bV3595pln6sorr/ScZ+nSpVq2bFn59eWXX67PfvazrtP/27/9m26++eby629+85s655xzPNfR0dGhRx55pPx67dq1Ou644zzncbNly5ZQ8yXBMAwdeOCBkqStW7cqw6cFQLzWiR/eWQiVoA47X62q3cR6fW6P2Vtu9R73L6nEtnUdLS3Vf7JZrVxXLy5kJrFtVeoNncR8bvNU299nTJUuvWRwXIeJO8n54XP2ZQSJ2TD1bC3njF1pvwaN27DHPm/ijPHePlMbn1DgYzl+XPiEY9DYmTvb0IUXFDu4xNkuCFNvBuG0r/2sw+k4VktcZyGxbZVkPe1HlPWXkyTbslHt27jjH9mV1r1XLTFHvDa2POQLRo8eHenykr87DuDwww/Xv/7rv+rnP/+5Hn/8cf385z9Xb2+vfvKTn2jBggWZSWxHYcqUKRVjja9du7YiqWz3wgsvaNWqVeXX73jHO/SpT33Kcx0zZszQsGHDyq8XL17smXC+6667KsowZcqU0IltAEClsAnqNBLbUrRPX0/7Se5O67hnXfWxiquVO4uJbSl8gi3MfNZ5Sj/l9rO/rQ/stP8EPEislKYpcerBveJGU4sui//BSlHGuVNi2ytuS/swzJcTWVStXG7bGXY++zRhjqXTueBX8PXFf10IW28G4fQlQrV1uCUuvXpw15LYLh3LoMe02nxJ1tN+xHWdTqOOiWLfJhH/gFUtMUe8ohFluud2ntTac1uSfvrTn2rOnDnl1y0tLbr22mv1gQ98oGK6J598UnPnztUrr7xSfu/rX/+6PvOZz1Rdx5VXXqnVq1eXXx9zzDFavny5jjzyyIrp1q1bp6985SvlIUmGDh2qH/7whzr22GMDb1cJPbeBaBCvSFOYniBuMZtGr5IoeqPRG6a6VV0Fda0pJpetY21X29+l6TunSTM6m1ync9rnknPv2mrjcQeJ2TCqld3P8ERuQ16U9lEUvVBLy7Dv+7SVYikL2xPm3K+1/FZu64u7XRB3L96w69i926y6b/2Mx++3vKVjOXFC8UHDfucrlaE0X9bOMS9RXu+s5+TM6fvlpi2bRPwj25K+96ol5ohXSPnIF0Tdc5vkdgCbNm3Sqaee6viZ/cGY1gdiWt10002aNMmhG9Ffffvb39Z3v/vdivcmTJig1tZWNTU16ZlnntGDDz5YEZxTp07V1Vdf7Wsb3nrrLXV2durRRx8tvzd06FCdfPLJOuqoo7Rz50498sgjeuaZZyrmu+KKK6r2DK+G5DYQDeIVaXNLFrg1kL1iNuiyauG3QR8mwV1tmY2kt8/UvPn+943bvrz+WsOz55x1uVKwYSNK3BLLUdezYRLsfua17qNaEtz2ee37Pi32WMrC9gQ596Mqv5Ooh9HxW5Za6s2o12EV9hxyGxLJLmi9Vm3dWTnH/Ai7372Wsew7TTr574uJjSy3ZZOIf2RfkvdetcSc5N0WCroO5Fce8gUNNSxJ1pimqX379jn+s3ObrlpQXXLJJYPGzd6wYYNuuukmrV69Wr/61a8qlnHaaafpiiuu8L0Nw4YN03e+852KBPuePXt077336sYbb1R3d3dFYnvIkCG69NJLa05sAwDqR5RPX0/qSe5BGvJ+HqjFE+jdtbUOfqDj5Enu+6aj3Xl6e+LHbZ9L1W/mnOaVir3Ek/hZrtP6m5sH/vb702KrObMqk2NBHqTntQ77ctPU1ur/4XYlcW9PkHM/qvKnVddEXW9GvQ4rr/W5nf/Nzf4S29LgY+lnvV5fhGTlHPPDbf9J2Tgn45JE/ANWtcYc8YpGltnk9q5du7R79+60i5G4pqYmXX755brxxht1wgknuE53zDHH6KqrrtKSJUvUbL078uGggw7SmjVr9OUvf1nvfOc7XcvxwQ9+UN/73vc0c+bMQMsHANS37p7onr4e5bLc9PYF76Hi1PC3jhWaRLnzqrfPrBiKRPJOInf3OE9vH5vVbZ/77aVkn7fEfmzj4LT+3bsrxwR3Gks4aG/JoAnuPPTeCnITntSY/UHO/VrLX1q+3/VFJY56M451WHl9SeR0/u/eHWw/uq3bab319Oser/pTSv+cjEMS8Q9YRVkfEq9oRJkYluS1117T3XffrQ0bNmjjxo167bXXKsZ6PvjggzV+/HhNmDBBp59+ug4++OCUS5yc//mf/9Fvf/tbvfrqq9q3b5/GjBmjo48+uqaxr61M09TGjRv1wgsv6NVXX9Xw4cM1ZswYtbW1acyYMZGso4RhSYBoEK9IU17H3I5y3F7G3K4u6TG3nZbtd96JE6Sl11T290h6zG23fVTaj1Z+4svPECV5SzplYRzRWs79MOWX5Gt9cbULkhjvPIp1NDcbvsefdRLFeOjW5dRbYrta3VsS5JzMQ1s2S+P9I11JxWsUz2ggXiHlo46tqzG3X3/9dV155ZW65557tHfvXkly3emGUTxBhwwZotNOO02XXXZZQyW56wHJbSAaxOuA3j4z1E9bf3hnQeecFbwBF3Z99cLtRrVa0sYpZsMuK+wxKPVGCTuv27jGfsvdiEr7Leg+sx/jWvZ5lDEbht/1uyW4a4mr3j5TG5/w95DNvMRrmudfFOsOsgzJ/7FrHW/ENn5xLXWu3/miWIeffSgVz7UTTzAGvR9Vgtt+Loddfhb4jVerpOtYL1HEVRLxj+xL8t4r7XZurThnsiEP+YK6SW4/8MAD+tKXvlSxo0sJbDfW6UaNGqUrr7xSJ598cuxlRTRIbgPRIF6LwvZuWHBJQes3OPfW9NLoPRtq6TVpj9lbbi2EWlbavaiy0HM0r8L2eK1ln0cZs2Hq2aDrtyfFovpFQL390iCN7Yny3PfTk9+efK22Pkm6YM4IzZs7sqHbBdV6aVsfIOvn1w21ri/scrMgaMxb1fKLrqik3V5AfeHeyx/Ou+zIQ8zWRXL7/vvv14IFC8pDjxiGUbGzm5ubdcABB0iS3njjjYqxt63TDh06VNdee63+4R/+IcHSIyyS20A0iNfit/vz5gdPIl59TUFr1w28PuN06dJF1RtR9pu466/Nx8OQouI3ceM2nTVmr1v2upbfEHxZZ5wurb1bVeertpywx67WfYDgY9DWss8l/2NxV4vZMPVs2LLH1euznoZJkJLdnjjOfb9J0SDrk6Sbu1o09qgdDdkuKPHqUV1KbHtNG3WCO4/nWNiYd+I2b5xt2bBtxEZv68Ed917Vcd5lSx5iNurkduJfi7zyyiv6whe+oD179pR7ahuGoY997GO69tpr9cADD6i3t1e//OUv9ctf/lK9vb164IEHdO211+rUU0+VYRjlf3v27NGiRYu0efPmpDcDAJCittbgT/nu7jErEttSMVnqZz77TV4jNbqCJGyqPTht5ep+X4ltp2Wtvdv74Xt+yx5nYtup3H7K2Sg62g21tFS+19KimhOFTvs8zeNVS9kfeliyPyfcbR8FEWTf50FS2xPXue9UfqfnwwdNjD72+F7f0zaS5ubBiW0p+ANYnTgdy5I8nmO1xLxdWtsfto3YyG09oFacd0hb4sntq6++Wjt37iz3wD7qqKP0gx/8QNdee60+9rGPOT7EcMyYMfrYxz6m73znO/r+97+vv/mbvyl/89Df36+rrroq6c0AAKQsSCLBqXdkmPny2AOrFlE8uX3FjcWnr6/fsEdLlu6saVkPPSydMXXg8ySOXZT7oNF195iDHkS2ffvgL5ii2Oe1zFvL8Yqi7JYfLEpy3kdB+d33eZHE9sR57juV337cvbj1mF2ydGdD1zX2Y1aye7d7bLgluP3uR6djWZK3cyzKuldKd/traSM2WlsPiArnHdKUaHL7zTff1H//93+XE9vvfve7deutt+q9732v72WMGzdOt956q9797neXl3Pvvfdqx44dMZYcAJBFfhpRTo2nxVc1hZqv0Rpdba2GOqcV/w6y/dbj0jmtuJyJE4bqgjkjal7WpZcke+yi3AeNzGmc4RL7MYxin9cyby3Hq5ayW790k7z3URBB9n0eJLU9cZ37XuW381u/zZ1dXMcFc0Y0dF2z8YnK19be8NV60lvrDr91gJ9hOfJ0joWNebus1DFh24iN1tYDosR5h7QkOub2/fffrwsuuKC4YsPQ6tWr9YEPfCDUsh588EFNnz69vKzrr79eH/3oRyMrK6LHmNtoBEk8IZp4HcytkRT2IWA0uirVGtfWmH3g51vUOr72MsR57Jy2188+CDpf0P1amj7sfLWuP+zywh6rWsonhUtQl+Y9oa0pcD1rLW/QsscVz/bnDMS972tVbb1u5XbbziTKFGQ+v8fZPvZ6teNmGIae//3bNHHC0My0C5JoD1k5Pafh0kVNgc6hIHWH19jecYybnyS/x6C3z9TGJ5yfb+C133v7zFB1bFi09VAr7r2C47xLVx5iNtdjbr/yyivlvw877LDQiW1J+uAHP6jDDz+8/PpPf/pTTWUDgFqt6ipo3vzgPVS6e4oP4FjVVYipZPXPqZfAaVMLVRtPYedrNLX0Yo1rWXEdO7fzuFq53c5jt/mC1hel6RddVghUX7iVK+r6ym15Xjcx9t7KTj24w2hrDT9m46Przb9uR7D62L5fokhsS7WNCb7gEveEr9dy07omVYtJrxvlteukiRMGpo26B3cU8wU5zg89PHj4rGr128QJQ0OVMw5Jt4ec9m3pYdFBziG/dYfXA03tvwzzs96s8bMPSsc4aN2VRv1CWw9IHucdkpb4sCRS8VuEY445publHXvsseW/d+7c6TElAMSrt89U15ri30FuYKw3SF1rBnoNITh7I8o6BmaQByL5nQ/pi/rYJXUeB12PdfpSj0A/63ErV9Tb6bY8P7+csPdwTDMBZN2O5TeYWrm639d8tdTjfnowhUlwX31NQes3DLyePGnwg92clrvoskIq16RqMemnB9j6Df7H5E9amONsT3Dn5dqUdHsornPI7/qc1us2DnWWYrIW1mNc4ne/l/bd6puKz+JICm09IHmcd0hSosntQw45pPz32972tpqXN3LkyPLfb3/722teHgCExROis6Gj3Rg0fmlLy+CkTlTzIX1RHrukzuOg62lrHTwe8+RJ3r3rvMoV9XY6Lc+aJC1N7zUkkN+HvMbJvh1Llu6smuCupR4P8tPcoA9psvbYloqJUqfpnRKq1vIkdU3yiskgP232MyZ/0mo5zg89XDlutJT9a1OS7aG4ziG/6/Nabz0nuO1jm3tx2w9zZxuJ/9qAth6QPM47JCXR5LZ1GJHNmzfXvDzrMqzLBoA08ITo9HX3mBW9AqRiLwE/N9Zh5kP6oj52SZ3HQddj7+Hslqz0W66ot7NakrTaWPdOD3lN45cs9u1YsnSn6xAltRz/3r7g8zodM/s+si/Xz5cGTg+zPOP05G88nbbv6sXOX5IEHcolrV9FRXGcd++u/DwP16Yk6tG4ziG/6/OzXq8Ed15/qee2H4Im7cePS77NS1sPSB7nHZKSaHJ7woQJOuigg2Sapnp7e7XdHuUBbN++XY8//nh5oPSJEydGWFIACIcnRKfHvl+tvQSC3Fj7nQ/pi+vYJXUeh1lPtWRl1D0Za1leqbzVEttOScnOaeHHOq5VR7uhubMH1r38huiPf1uroc5pweetto/sy3X60sBpW6xfRkycoPJ4xUmzx9DauwfG0g7yMKqsxFItx9n+hUPerk1x16NxnUN+1mePSb/rK82XZkzWyr7fgx5jKZ3tp60HJI/zDkkyzIQfm3nllVeqq6tLhmHo/PPP15e//OVQy/nmN7+pm2++ueblIDlbtmxJuwiu8vA0WeRLkJ9RB02IEa+Dhd3fcR4nDIgjZpM4dknFR9D1RF2urC2vt89MPfFjGIZuv6NZS5YOPNMljuMfdlurzWf/3O8xOeP09BLbVm7lCrrvsxBLYcoR9BzKcrsg7no0rnOo2nxB5w87X1ZZtyPIMR4/rpjYTjJmaeuhVlmuY7OK8y5deYjZ0aNHR7q8xJPbb7zxhs444wy9/PLLampq0uWXX6729vZAy+jp6dE3vvENmaapww8/XHfddZda7AP5IHNIbqPROH1bHcWDNIjXAb19pjY+oUAJ7DOmSh87xQg136WXeCd9orzJTvqGPerlWeczDEPP//5tmjhhqB74+Ra1jg++HD830iV+Gs5+tyuu87jW9URZLqfzqNbtTGq/xaG3z9QJbU068MADtXJ1f0WC22s7wpwrSZ7neTsmeStvVMLUb589rynT7YJGPZa18HOOh207RDWNVdBjHKYtG0W9F6a9UA+y0KbM8xdD3HsFw3mXvjzEbNTJ7cS7ZhxwwAFatWqVDj/8cBUKBX3jG9/Q/Pnz9dxzz1Wd97nnntNFF11UkdheuXIliW0AmWT/SS43ctFa1VXQvPnBxwJeu06h51twifPYu9byhHlA1bz5plZ1DSw7ymXVIqpyrOoq6PzO7Zoxa5suuKjge3ml5Sy4pFBentsDvayq/Rw+yH5K6jwOup6oylXaF7t3m5FuZ17rv4GYL8bGzOkjKoYocduOMOde0ud53o5J3sobhfDj5UdT58elEY9lLfzUDU7T+Kkb/EwTpm6yD6UT9TEOU6aonz+RV1loU5bKUGrP1dIORLZx3iEtkfbcvuuuu3xPu2XLFq1YsULbtm2TYRQD+5hjjlFbW5v+5m/+Rvvvv78Mw9Abb7yhP/zhD3r88cfLCXDTNDVq1CjNmTOnnO0/88wzo9oMxISe22hUp00tVDTyW1qke9aF/26ReC324pg3v3K7q908XX1NQWvXDX6/2nyLLitUjEfr1IPbXp6wwzdcf21xnqiWVUsPl6i2aeECacnSwdNVW56fJHa15Tk1sCWF2k9Rn8dRrcc+vVRbzHz5cjPS7Uxqv0XBHvMLF4zUzOkjtHXrVv1/p+9z3Y4w516UdUbQ8zxPx0TKX3nDCtqTbXBdOxCvWW0XNMqxrIWfusFpGqn6tc1P/RFV3VTidoyDtGXDlMmpPF71Zb32JE3zWuNWBr9lcYupWtu3YXDv5U+t17F6Oe+yIA8xG3XP7SFRLuxLX/pSOVHtl2EY5R39zDPP6Nlnn3WcznowDMPQ9u3bddVVV5XfI7kNIIu6e9yfEM3FO1mHHWpIqrywH/8eVW10WRPbUrEH98dOqfxpZFuroTmzBm4sS/8HbdCVlhnlssKKapvOOcvQrl2mlt9Que+9lucnsW2/mXdaXulv+zTWZfgdmiSJ8zjoepyml8Ifq41PKNLtzFv9Z4/50nAku3YN/gKhtB3S4OGN/MRU1HWGX3k7Jnkrb1i9fcFv8O3125KlO3XiCUM09qj4ylmLRjmWtfJTN7hNU+JUN/itP6Kom6yiOMZBy2Q/n6Tq9aVTe6E0PniepXWt8SpDSZh2YBTtW8QjiutYvZx3SEcsX5WbpunrX4lhGOV/TvM7TWNdFwBkkdP4gyX8/Ko2ba2GOqdVvue1T90ayU8+Jd/zlH5u2znNudEV5Cd21XoqRLmsWkRVjo72Ji1cMHLQPE7L87qhKR3z0rL9lM8+jVP5vCR1Hgddj9f01crmp0d7rduZ1/rPHi9Llu6s+GLGvh21nHtJn+d5OyZ5K28trNe0IMfWGkMXzBmhiROGxlXEmjTSsYxC1Ne2oPVHLXVTSdTHOEiZNj5R+drvOWVdh1tbL4+y0KZ0i9eg7UC+CMuuKK5j9XTeIXmRJ7eDJJurJb2rTUdiG0BWOTUO71nXxPhiEZrR2aTrr63eYHc6Fh/+kALPs/iq4vpmdLpfOv3cQPi9cYhyWbWIqhwzp4+omuCudkNTOuZhvwjwKp+TpM7joOvxM71b2fwktmvdzrzXfx3tRsU42yVu+7n0WZhzL6nzPG/HJG/ljYJT/eZHR7uhZd9p0ry5g+vXLGjEYxmFqMakDVt/hKmbrOuI4xgnUV92tBtV23p5lIU2pZ8EN4ntfKvlOlaP5x2SFemwJN/61reiXByAHMjC07ezxrsHa/WhFBpVmJgoTl98EJ7TPnU/FpWf+ZvHX28Cr2McpvdUVMuqRVTlmDl9hHbt6nccouSxxwcPAeO0PLde81GUzyqp8zjoeuz7yWt6e9n8JrZr2U7qv+DiPs/zdkzyVt4ohW0XZbU91cjHMgpB6oaSqOqP3j4z1PrjPsbjxylEmy9YGzOr51OtstCmdGqnlF77bQfW8z1kPai36xjyI9IHSgJeeKBk/VnVVVDXmuANoFIDqnOa6u4bWr+Nw1oakfUYr1HEUnOzUbFPW1oqxw/281NdP/MELVsUy46znEGELYc9Zm+5teB4U2wXNh6Clq/acuI4j2tZT5jpnfaF5J7YjqKcce23uLntb2nwfrSqdTviOM/zdkzyVt6syGK7gGMZHT91gzR4aKla2xyldnq19Vdbh9Mx/ux5TYFj1tpWlPxvbz3fd4SRhTblgksKWr+h+nT2sqR1LLNYxwJe8hCzUT9QktodQCi9faa61hT/Dvtz9a41xeXUiyA3aFH93LQeRBVLpd48JX4a6vbjEGXjPsplx1nOIKIqh9tPU63CbFcU5UvqPA66ntKY7yWTJ7n3fnPav2ET207Lq/XnzFmu/+zbsXDByIohSuz7McrtiPo8z9sxyVt54Y5jGS0/dYPXNEE4tdP9LDv4MS4EKpe9rVhap1OZnBLb1u1pdGm3KXv7zJoS2xLHEsBgJLcBhFJ88nWwmxGnm516+QlS2CdE2/dhIzbUooyljnZj0IP1Wlq8fwIbZh6/olx2nOVMoxxOy6lleVGUL6nzOOh6evsG/1T3oYe9b+zcvkBoaSl+ERTldtZL/WffjoULRmrm9BHqaG9yjamotyOq8ytvxyRv5YU7jmU8/NQNXtfVWtvpXssOc4yX32Bq/YY9nvNYObUVpcEPU7buk3q+76hVmm1K+7F0Yi8LxxJANSS3AYQWpLdNvf/slCdE1yaqWOruMQf1KNq+XZ43dGHm8SvKZcdZzjTK4bScWpYXRfmSOo+Drsc6fakHd9j6Yvt2aeMTinQ766X+s27H3NmGZk4fIUnq7il4xlSU2xHV+ZW3Y5K38sIdxzIefuoGr+uqVFs73W3ZXr8isrMe4+mfMzRxwlBf8znNLxW3x22f1Pt9R63SblM6/SLNrSwcSwB+MOY2EsOY2/XLT4O4URolSTxgs57jtZZYCjOGIGNuB9MoY24n9aDcsNP7mc/Pvhg/LlwCyW399fKA4d4+Uye0FceDXbm6X0uW7ix/5hVTtW5HHOd53o5J3sqbFVlsF3AsoxPFmNtWQdvpUddN1jpWCh6zfp4rYVXP9x1hZKFN6fVsC6vJk+T6EO0kZbGOBbzkIWYZcxtA5nj1um2kxLbEE6JrFTaWnD67Z12TZ2/wMPP4FWTZ1X567basM6YOTONWzih/1h3V/urucU5sO/XgqXUMaz/lc9pHfs7HsPNFMX3QxLbbvtj4hPP81eIm6voqjvovbOxbE2v2xHa1mHJL+PsRZfxaue1b+3z2136PSdRDR3ANrR8cy2j4rRuqTWMVpJ0eR1spjmPc/hnnoS7q/b4jqDjbvmHL4CULiW0A+UByG0AknJKSp00teDaYASdBY8nrxswtWR5mHr+CLnve/OA/E+7uMbV2nTRxwsC0Tsn7efNNreoK9tCmoNu0e3dl2b3218rV/Vp+g/Nnx79HjjemYccJ9XM8V3UVPPe/1/qi2rdRqzW262GfRLEN3T2FisS2ld86wu8+STt+6+GYA/UoSN0QZBrJXzs9zrZSWG6J0RU3muq5LXs9E7MkC8fT7fh5DVFS+px7SABeGJYEiWFYksbg1mghsR2dRolXP7Hk95cBXr1E/M7jJ4ZrKU+1m8rSNFLlT4/PmCqtXec9zfXXhn/wjtc29fYVk1tOrNMZhqHb72h2TRZay7nxCQWqQ8Lu8zNOl9beXX351ZZTy76NWth9UZrOfjzzuE+i2gY3fusfv/skdPw6nPdhtnPhAmnJ0tqXk6XzoBE1SrugkfipG/y0Jdymsws7pGDYX2iGiVmndUnObQYr7kHiP55hymBfR7U4TfM4Uscib/IQswxLAiDT0nz6NupLtVgK0gD308Op2jzVerHUWh6vnwlbp7Gv49JLqv88OY7EtuT9xPvK7XHvBWsvp9uxctr/tezztXdX9hQK20M8Kwm9WvZFadvtxzOP+ySKbbBauGCk5s52Xl6QX4bUkth2WtfaddHE7zlnhRlaKFvHHKg3YRPbkvM57NWDWxrcTo/iehI1tzK5tRXT6FWeVVk4nn46rDgdS6tGP44AvJHcBhCp7p50n76N+uEVS719wXuWjB/n7z0rp0a+0xizYcrjluC+evHgnwmH/elxLb1c/G5TtZ89//DOgutQJG7L9kpwl/Z/FPv8oYfla+xyKdvPD4hiX5T2bZAb26zuk1q2wWrhgpGaOX2EOtrdE8BO6/KzTyKL39MHPg97rOrhmAP1wk/d4DRNtbaK17Xa2k6P8noSFa8yubUVS9PFVaa8yMLxtJfBrSxOx9KuUY8jgOpIbgOIjP2m1/rtO9+2I4hqsbTxCalzWvG13+RKW6tRnkcqzu+nt6G1ke82j3XZQZI9Tjeba+8eGEu7lsRRrUmnINvkddPc329o+ufc5/WTNC/tD+v+j2Kfd06TY8/3WnqIpyGqfVHat36SnVnfJ2G3obQf5842NHP6CF/LC/PlUmTxuyia+K2HYw7UAz91g9M0ftoqdk7t9KivJ1FwK1O1tmJp+jjKlBdZOJ7WMri1b72OpSQdcbgiKQuA+sWY20gMY27XN7ebXm6Go1fv8RoklsaPC97ILfX4CDNftXn8TOM2n32s6TNOLyauqo0XPn6cBs3r1Vu0VD6/ZQ2yv9zK+v7J0m8eci5/tfqgVE638tayz63z1UMdFtW+KMnjPgl7XM+YWvyio7SME9qaHOvZqPdJ1uI3j8fc7od3FnTOWcH774SdLwvqvV3QiMK2OaKqz6O+ntiFiVnrsuNuK9abuI9nkGWFvk7/tV2cBupY5E0eYjbqMbdJbiMxJLfrV7Wb3jzdFOdBPcdro8eSU88V6080S71owjxwZ1VXQV1rKpfROU2a0el9o1Aqk59pnbYhaDnT5Gf/Z63MccvTPrHGeLUeYdZtmDypOMSHNca96tms7pOoypXV7fPjwgUFPd5bPKaLr/KfBFl0WUEPPSyd0CZdtzR/Ce56bhegdllsW9USs1ncHoSTl2NJHYu8yUPM8kBJAJkS1c+dAWJp8PY5JZS8hgDx6rHdtab4t3VM4K418hy70HpMqk3rtg1Bypk2P/u/0eRln9hj3FoveG1DKbEthY/xrOyTqMqV1e2r5od3FhPbUvGYLrqs4Gu+UmJbkh7vLS4HqBf11raqt+1pZBxLAFEiuQ0gtCw8fRv1gVga0NE++GnxLS2q2B9O03hpa3UfE9jt56ZOx8TvT1O9ymfflqzxs/8bTR72iT3GnRLc9m1obh5IbEu1x3gW9klU5crq9nk556wmTZ408NpPgtua2JaKX3bkdWgSwK7e2lb1tj2NjGMJIGq03gCEkoWnb6M+EEuVnJ4Wv327Khrybk+Uj6rBX+vPQL2eeG/flqzxs/8bTV72idcNsNM27N498HcUMZ6FfRJVubK6fdUsvsp/gtspsR1kKBMgy+qtbVVv29PIOJYA4kALDkAoWXj6NuoDsTTA62nxpURdtSfKOyW43cbB9jNtmKRftTG3s9rrxs/+bzR52ydON8CLLitUbENzc+U8kycF65Gc1X0SVbmyun1++Ulwk9hGvau3tlW9bU8j41gCiAMPlERieKBkfcrC07cbTb3Ga9yxlPVY9fu0eCuvadw+c3oopde0USS23z9Z+s1D7uXPAr/7P0iZ817PRbFP0toHbrFoHWPbyr4NbvVsHHFSjZ996LT+8eOkjU84n+tBllNt+7Jat86aW9CTTw28LiWwqyW283jeGoah53//Nk2cMDRwuyCP2wv/snh+9vaZOqGtKXBbttRTN2vbg3CyGJtu6vXeC/UrDzHLAyUBZErYxgUNTNjFGUurugqaNz94j8PuHlPz5pta1RXvA8bsiSNrT1K3BzRWS1KtuNHUaVMLjgkpp96tbtOG3QbrchZftZ8WLhjpWMYs9AL1Stzt3l1ZPr9lTip24uL1pYrf8S/T3Acd7UZF711p8Bjb1s/9HFevOIlrTFA/dZfbF1jz5pvavdv0Xa4w25fVunVVVzGx/c4jB9576GHp7/7BO7Gd1/N2VVdB53du18rV/YHmy+v2wr+stdMH6oxgMVeK1UfXh6tXue/InqzFJoB8I7kNAKhrvX2mutYU/w770/yuNYptbD+nJOJDD/sf29YrCWkdM9eerLYnq7ymDVsG63JmTh+RyQR3tR6ppdixqlbmpGInLn6GsamWzE17H3T3mIN6aNvH2F58VVMkid+SqBPcfuquar/M6FojjR+nquUKu31ZrFut++3FlyoT3NaOS06J7Tyet719plbfVCzrkqU7fScN87q9yC/rubn8BtP3lzHEKgCgmiFRLuz888+PcnG+GYahNWsc7j4BAA2vrdXQnFkDyZ7S/0F/mh9HTxGnHtulhJz1fbdE42OPVybwnIYckYpj5jptb0e7oZ7bKh8c5zat322wlsW+nJnTR2jXrn4tv2Fwb+hSeZJULaFnjx0rtzInFTtxqZYstW53advtn9n/Tnof2LehubkysW2Ncbdt+Ox5A+Xt7vH/qwa35YWJ7Wp1l98hh9paDbW1yrVcQYZUsW+fVVbqVvt+e/GlwdMYhntiO65yxaWt1dDc2SrXq8tvMGWa6R8HwM5+bi5ZulOS9Mmz3echVgEAfkSa3H744YdlGMlebEzTTHydAIB8CZJwinPsXCu3p8Vb1+80jrb1fXtiuzS/3fbtxe1ySsRaE9te0/rZBntZnHS0N8k0C4PmW3GjqfHjkvu5qdv+t6uWzLOWOanYiUu1fRI0we20jLjZt8FpjG17jDttQ+t4Uyf/vbR+w56KL2P8bI/T8sLGttv+HT9ucBLb+rlTWZ2WNWKEqRU3ynUeP2WyykLdWq2MUrEH96LLClp8VVPuz1upWK8OH95cThZm5TgAdvZzc8nSndq1y9B55xKrAIDwGJYEANAQ/AwZkOSNlNvT4quNse00lrCfh096DRshFXuzuk3rZxsmThi8LW6s21iar3NasuMouu1/J27HxFrmergJ99onXudP2HHh42DdBnti2yvGrdtgPa4TJwzV9M8V/w6yPW7LC8Np3298QhXHqvR+ideXNdZynXNWk+/zwGs5WapbrWW0Dkli99DD0rkdtT1rIEvsQz9l5TgAdh3thubOHoi75TcQqwCA2hhmhI/NPO6446JaVCCGYeipp56qPiFStWXLlrSL4CoPT5MFSojX2rjdMKV1I+X21Peg5XR6f/w4aeMT/nt4ht0HpW1w2xa3mK02XxKCrDtrsRMXr32Sl31w9eKC1t498NpvOUvbbo/Zx3sLoWI0ytgOco5X2/f2coUtp3W+rMXGossKg3rtS8UxuJ2GKkk7Zmthjdfrlr3u+GuDrJ2jaGyGYej2OwZ+bSARq8gu7r2QN3mI2dGjR0e6vEiT24AXkttANIjX2jn1Wq7lgYpx8VvOajeCXj267dNefU1Ba9e5f+7GK1HtJ2at80WRaIuLfV++baS0Y+DePPD+yqOsnz9Bzwen8ma1ns3bvk+rfPbEtj2hvd9+0r59lZ9/rzu/P2i1x+sttxYycRyiluVrA4IpxezK1f0VCe56iVVkQ1R1RlxtAuo0xCWr7VirqJPb+W3FAQAQkv1n/lm9kfJTTj+JOr/DRqzqKia2rcOe+BmipLvH1Lz5pi5cUNC8+f6GNHGaf1VXQau6al9GnOz7MkxiO6myxiXL50+Y88HvMDxZkOV9L2WjfPbE9uRJxcS1tVzWxLZUTHwvuiyf56OTLByHqGX92oBwZk4fUTFEST3EKrIh63VG1ssH5A3JbQBAQ+poNyrG4JWKPYaydiPlVc4of7rb22eqa03x74ce9p/gtpbh8d7q03vN37VG5TLUsozevngTlR3tht42svK95mZ/sZN0WeOSxfMnyPmQ9wR31va9VZrlc0psL76qybVc++038PdDD9dfgjvLcRKE9fqU5WsDwulob6qbWEU2ZL3OyHr5gDwiuQ0AaEjdPWZFDyGp2GMoawkut3JefY3/B6H19jkPS7LiRrPcMG5rrUz2OSW47Y1oezIxTI9v+zYETTg6LSOJoUmsPbYlaffu6omxNMoal6ydP/YYD/pgU8k5xrMoa/veLq3y/fBO98S2W7n27VPFQycferi4nHqQ9TgJwn59yuq1AeF09xTqJlaRDVmvM7JePiCPSG4DABqO07iwJVnqwelVzrXrpIkTin9XS+S1tRrqnDYwbalB3TlNFQ1je7LPmuC2T+vUyF58VZPvxrpbL9sgPWrTeOiUfZ3NzQOfefX8rKcHZGXx/LHHuN99a403e4xnURb3vVWa5TvnrCad0Fb82ymx7VauF18aSHCf0FZcTt5lPU7CyPq1AeGsXN1f8QDUeohVZEPW64yslw/Im/y33gAACMCpgXjPOv9J2aT4Kef6DdIZU/39dHdGZ5Ouv3YggXz9tYZmdA5uBjgluM84XRXTejWynRvrlQnfao10Pw3+LCS258wydN9Pmip6rDsluOvppiTL5481xoPwOh+yJMv7XspG+a5b2qSFC7wT207levEl6cMfLM6fd909g3/Vk6U4qUVWrw0Ix/4wyXqKVWRD1uuMrJcPyJNMtOBee+013XXXXbr88st1/vnn64wzztApp5yiU045Je2iAQBswv5sv9af+0ex3uBJWf/rjHK/BCnn2nX+f7pr7ZXq1UN10DruHliHU9nGj/Oef/kNplau7v/r/P6GU/E6HllJbJfWufgq9wR3vdyU9PaZoc6fpIf5CNvzOm89tqOsu+qtfNae10HK9csH8zUMgtO5Ze8Fm7U4iULWrg0Ip7unMCixXW+ximzIep2R9fIBeWGYppnaleLVV1/V0qVLdffdd2vPnj0Vn5mmKcMw9NRTTw2a784779RXvvIVSVJLS4t++ctfaujQoYmUGeFt2bIl7SK4MgxDBx54oCRp69atSvG0AKpKM15XdRXUtSZ446rUOOucplC9I6NYb3Oz4auBGKYhGeV+8bv+JBq8Tj9tt46LOWeWod27Tddtt88/apShbdsq47VaTPgpQ5qJbSv7w+yam4tjcVebL+tK8W3lNy6l6sc4i7LULshSnZCn8mW1XFGwX3MMw9DtdzS7JgtLnM7PPGyvkyxcGxCO/djNnW3ovHPr49xEdtVSZyTRJqBOQ5Sy1I51M3r06EiXl9qdxq9+9SudeeaZuuOOO/TWW28F2tn/+I//qNGjR8s0TW3fvl0//elPYywpAEBK78neUa3X7w1S0B5DUe6XIDdySfRssq/D3sgeP06e226f357YlqrHRLUyZCWxLQ3uwV0PiW1rfJcEiUsp3HmPoqzVCXkpX1bLFQWna45XL9gSp8S2dRl5k/a1AeHY43DhgpHqaHdOSeTt3ES2Zb3OyHr5gKxLJbn96KOPas6cOXr99dcr3t9vv/104IEHVk10Dxs2TKeddlr59b333htLOQEAA9J6sncU67Xy00B0uqFyS85FtV9K88ZVzrA62o2KBzxJxd4kHe2Gr213mt/KT0x4lSFOvX3Be40tvqqp4iGTkjRyZPxlRf0JE39J1AlZL19WyxUVp3rXOhTJ3NnVE9tzZuVne72kdW1AOPZzc+GCkZo5fYTnPHk6N5F9Wa8zsl4+IMsST25v375dF154ofbs2SPDMGSapk4++WTddNNNeuyxx/SDH/zA13KmTJlS/vuhhx6Kq7gAAIu0nuxd63o7pwUvg3WdndOCjVEdZr+0tcZfzjC6e8yK3iNSsTdJafuqbbvT/CV+t7NaGeIS5ph095gVPbYlaefOfI3la2XdByVB4luKJy4bQVbrhKyXL6vlipLTLyQk516wbtecPG2vm7SuDQjHem7OnW1UTWyX1EOsIhuyXmdkvXxAliU+5vbixYv13e9+t7hyw9AXv/hFfe5znyt/vmnTpnLi2m3MbUnavXu3JkyYoH379skwDP3sZz/TmDFjYi8/wmPMbSAaWYjXaonruMZJrGW9vX1mqBuiIPNFsV+SKKdfQcb/89Mb3c5PXGRhDEK/+9Ze1pEji4ntkjz/rLS3z9TGJ7x/XeD2sNE8JiKyUM+WZKlOiHI9cZcvq+WKktMQD588e3c5XuO85qQtC9cGhNPbZ+qEtqbAdWxeYxXZwJjbaCRZase6yfWY26Zp6vbbb5dhFB988qlPfaoisR1Ec3Oz3vWud5VfP//88xGVEgBQTVpP9q5lvaUborA/Z/UzXxT7JWw5/cwXZJlO5b1nXZPr9jltu1di2z5/FGWIS5jE9pxZhv7rnuTLGpe2ViNUfPvZd3H+xDzs+RDms7jqlrDJnKSSQF7r8dq2sPP5lcR+81tO+3Rh57Ozn5NLlu5Ud09BUvBrTp5k5dogxdumqFdZr9NQf7JUZzjJevmAPEg0uf3b3/5WW7ZskWmaampq0vz582ta3hFHHFH+e9OmTbUWDwAQgFOi67SphdifbF/Leld1FTRvvv/GYWn6RZcV/1/VVfBVPutDBcPsl6DlLOnuMV3LGWSZTkNL7N5dfRgSt5/KW82d7W8IF6/ETNYeMpWnstYq6vPeK2Zr5RXzXp9195i64KKCrl++0/Ezp/LGcc7mXb3vE7/bZ5/O7/b5na6j3dDc2QPn2/IbkrkWpyVL9W29xzhQD7JUZ+SxfEBeJJrcLvWuNgxDxx9/vN7+9rfXtLwDDjig/Pebb75Z07IAAMGl9WTvMOvt7TPVtab4t5/GoXX6hx4u/t+1pnpvq+4eszx9kPKFLad1vaXGsb2cQZbp9jBO6zK9GtuPPe6+7NJ4sH7G6a6WmMlKgz9PZY2K1/kXhFfM1sor5r0+s5Zp2Yp+rd+wp2p54zhn867e94nf7bNPt+iygq/tC7ofOtqbtHDByPLrev0pe5bq23qPcaAeZKnOyGP5gDxJNLn9+uuvl/+29roOa7/99iv/vdv+9CYAQCLSerJ30PW2tQZrHLa1VvbAlqTJk7x/FmtvpDY3+y9f2HI6rXfOrMrhIPwu0y2xXbLxiYG/nRrb53YUBiX2S0aNqnx4lFtjPciwNmk3+PNU1qg5nX8lUcRsrbxi3u0zp/GLJ04YWrW8cZyzeVfv+8Tv9tmns9aPbtsXdj/MnD5Co0ZVTpfEtTgpWatv6z3GgbzLWp2Rt/IBeZNocnvfvn3lv62J6bDeeOON8t/WXtwAgOR096TzZO8w6w3SOHTqgf3Qw+7LtzdSJ0+S7N+7+t0vQcvpp3FcbZm9fcHHyLYv88WX3Ofdts3UytX9VcsU9Kf0TstIoiecfX9luaxxcDr/rKKI2VoFGULHHntzZw98GdPdU32IhzjO2byr933id/vsQ1VJxeuD0/bVsh9Wru7Xtm2V60/iWpyErNa39R7jQF5ltc7IS/mAPEo0uX3QQQeV//7LX/5S8/J+//vfl/8uPQkUAJAc+82atSdnnL0Kalmvn5tRp0R10OmtifEw+yVMOas1jr2W2dZqqHPa4HnmzPIuh1Pixsq67daHnTmVqXOaymUIcuNvX0YSPeGs+yvrZY2a1/lnFUXM1irMGPHFMhWbyCtX92v5DdH1rGq0BFe97xO/2+fni9Ja9kN3T0FLlg6MEZ/UtTgpWa5v6z3GgTzKcp2Rh/IBeZRocvuQQw6RJJmmqd/+9rcyzfANrVdeeUUvvvhi+fXYsWNrLh8A5F3Yb/DDzOd0s1btyd5RlC/Meu28bkadlr/4KvflV0tshylf2HL6aRx7LbO5uXL+0jKrlcNtKJLSttsfdnb1NYMT3Ndfa2hGZ5NmdDbp+mvdx0332q7SMpLiVVYv9rImed7Wys/5ZxVFzNait88M9XPe3r7iLw2sCcOwPavi2P48xUxS+8RLnPsryPa5fVEaZD/Yy9TdY1Z8ATN3tvM15+rF+X54YVT1bRyyEONAmrJ4TcpynSFlv3xA3hhmLRnmgHbu3KlJkyZp7969MgxD3/nOd3TKKadUTLNp0yZNmTKlWDjD0FNPPeW4rCVLluiGG26QJI0aNUoPPfRQvIVHzbZs2ZJ2EVwZhlHu/b9169aavngB4uYWr6u6CupaE/zGqXTj1TlNvhtK1W7WnD7fvdusuXzNzUbg9Xqty6kHqteDuKpN75TYLs1fOj5WfvaF0zjY1crpR9Bt9zOPlXV+wzB0+x3NFYnCyZOkxVf5b5iHidM8SPK8rVXQ894qipgNyr5vg8SvXdjj47auWrY/TzHjtP6SpGIiqf3ld/tq2Q/VYnrhgpH65Nm7y+0C++cTJ0hLr6mf+jNr0orxPOLeq37k9ZoUBPGKvMlDzI4ePTrS5SVai4wcOVITJkyQVOy9fc011+itt94KvJznn39ea9askWEYMgxDH/nIRyIuKQDkS2+fWU6cBvkJsvVGrGuNvx4UfhLITr2YoihflOPeOk1f7SbUa3qvxLb1+FhVK59bsjCKm+Wg215tHiun+WdOH6F/+uTAEzYfelhadJm/noRh4jQPkjxvaxXmvLdKOsHjtG+rxbxb2efODtezKuj55UeeYsYurn3iJcn95Xf7wu4H+7YsuqwwKLFtfWhvaV3W3uLrNyj3PbizLI0YB9KU52sSgPqS+Fdkn//85yUVv0l44YUXNH/+fO22P3HLw/PPP6/Pf/7z2r17oFfCjBkzYikrAORFW2vwn907Jauqjd0WpGe0V6IrTPmsah331j69fczglhbnh325Td/c7J7YlgYfHyu38jnt6yDl9CPotrvNY+V1bL72L/vr/ZMHXvtJcIeJ07xI6rytVVTnvVR7zPrltm+DxvyoUQPjbwcV5vyqJi8x4yaOfeIl6f3ld/vC7Af7tlivOdYHoFo5DRu19u76eMhkViUd40Ca8n5NAlA/Ek9u/93f/Z0+8IEPlBPTDzzwgP7xH/9Rd911l/r7+13n++Mf/6hvf/vbOuecc/SnP/1JpmnKMAydfvrpOuaYY5IqPgBkVpCkbpgxIKN4srdVkPJZhR331q1XSHePOagH8vbt7jf/TtNbv6P12+vZyl4+p+NTKpffcvoRdNvd5rGWs9qxWXzVfhU9CR962L0nYSOMVRr3eVurqM/7WmM2CKd9u+iygmPM23vBlmzbZg56CKpfYc4vP7IeM17i2idektxffrcv7H7oaDd0xtTK9yZPkuMXMNXG+6anZDzSiHEgTXm+JgGoH6kMbnTNNdfoyCOPLL9+6aWX9OUvf1nve9/7NG3atIppZ86cqVNOOUUf//jHtWrVKu3atav82VFHHaWvf/3riZUbALLOTwMzbMMyqid7hylfXE8UdxofM0jZ7L2zikkG717PTkk/a/ncEttByulH0G2vNk8Qi69qqki0OPUkbKQboDjP21qFPe/toojZMOz71tqL1Vome+9W62fLbwhe3jDnVxBZjhk3ce8TL0nsL7/bV+t+uPSSJk2cMPD6oYc16AsYp22xPhjZ7ZqI2qQZ40Ca8nhNAlBfUklujx49WqtWrdLf/u3flntgm6apvXv36qWXXipPZ5qmfvWrX+mll16SaZoV0x577LFatWqVRowY/BM8AGhkXg3MWhuWUTzZO0z54niiuNO67lnXFKhs9umLSYbqPe/sCe7mZv+J7Wrl9CPotoedx8viq5p0xukDr6OM0zyK87wNq9Szc0ZnkxYu8P+z+qsXFyKP2VrYxx2Wil9E3bOuadD7UrG8/3n3flq4YGT5vVJ5wz6X4FtXBP/pdjVZjBk3UdcfYcS5v/xun/0XAmH3w9Jrmip6cC+/wdTK1f1/LcvgdVjH+3a7JsJbtXPfLQbcrnO1rCvq+YAo5OmaBKD+GGaKj83ctWuXrrzySt1+++3as2dPsUCGeyVnmqaGDBmis88+W1/60pc0cuRI12mRPVu2bEm7CK7y8DRZoMRvvDr1IMrSw43SLJ9XI7v01Hcrr4dFVlue3zI4bb/k/RDNKNbrZ5m1lsMrZrMep0nLyv4onQdzZhnavdss/11t3YsuKwzqBd05TeVkWho3uG7DHNn3rbVMnz2vSQceeKBWru7XkqU7B33uVmav86dzWvGLrKi3Pysx4yZMnRNneaPeX0G3z+90YerzUaMMbdtGAilq1vrQaX+6HbvS+xMnFB/maf88zLrclNZlrW+zjHuv+pX1a1IYxCvyJg8xO3r06EiXl2pyu+TVV1/VbbfdpgcffFBPPPGE9u7dO2iao48+Wh/+8Id17rnn6l3velcKpUStSG4D0QgSr35vqtOSRvm8Egi9fabmzfc+/53K5rQdYRIT1nkl74Syn+0JO61bucKWo1rMZj1Ok5b2/vA6D7zK4JTYLrn+WsNz6J2kznf7F1Vu5s42dOEFB0mSrlv2upbfUP389vPF0PXXGtr4hL9zO4i0Y8ZN2Don6QR32PX6Lbf93Jg8qfjrlbDL85onyLyozl4f+v1Swv7+GacXh+D6/9m79zgpqjv//+8aLgOow03CxRijBkUDM1xUYm7uhmwuJELU7AZH4jjAchGDi6wmcTXGbKIGRSIrclEY0XHixk0UjCZuvMT84gWMwIwKC1n1qwkKGGFA5Spdvz96u6e7prq7qruquqr69Xw8eNDVXXXqVNWnTld95vSpXOU4WVcu1nVltrdhxb1XvMWtXSJeETVRiNlYJrczHTp0SO+8847a29t1+PBh9e3bV/3799fRRx9d7qqhRCS3AW+4jdfxE7IfoFZTk/w5flgEWT8niYN8iV27hEQxieBMdttfP8ld785itsttmaXUw0nMhj1Og1bu/eE2rvMltr2Ix2LkWod136Y+k7KTznMv76VpU3qqvb1d997X+YGTmXV2+4sHP7a/3DFjVWqb43cSpNT9VeofC71M9Ift2MeN0wR2se87WZfbuoUd917xF6d2iXhF1EQhZr1OboeudenevbuOO+44ffKTn9TIkSN1wgknkNgGgCI1t5idkjh79xYeFzooQdavtc3ZDWCuhz5KyR6fmWNa2t1UWscbzDcGZq7td3ujajfOYeZ6nW57phHDnb3nph65hD1OgxaG/ZHvPLCOG3vzre4S23blO40Vp3LFvN2+zVWnhbft04vrD9t+lqpzahxut0P5eL39YYiZTMW0OX7HRKZS95fT7bPOlznGe67tc7sfwnbs48jumNx8q/3Y5vmSzU6OrZMH86VENbGN+KNdAhC00CW3AQDesBvzLsXvB3c5EXT96moNNTYkXxe6AcyV2GtsUMGhFTKXzZzfKt/2W8t0It963Wy73TJ2ZRZTDzthj9OghWl/OElwN7eYWr3Gfnk355nT+HLKLubz9UZPbU9mnS6d2VNjRnezrW/mci+9rKx1pd5PcZLgL2X7wxQzKcW0OZK/MZHixf5yun3W+RbMr3K0fcV+j/Tu7SwpCves5//qNdKY0cnXbnpmOzm2ThLcJLYRVmH8TgIQf6EblgTxxbAkgDecxGspP4kNQjnr19pmOk6YlFLPfOvxc/vzrdfNtmcuI7lPMmWuK1fMhj1OgxbW/ZEvKZyLmzoWE5dOpcq224cjhivn+NdtL0nnfD75c0lrO9vaZtoul688J3UsRlhjJqXYbfMrJrzeX07raZ2v2OUyWeucGkbHOkZ8pbSfQek0lvYE6corqlzHkJMYCPv5XQruveIprjFLvCJqohCzsR9zG/FFchvwhtuH8zl9+FFQwl4/q5tvTWT1THX61PdcN65h2H67hLWTG+1il7OLWT/3g5/JUr94vT+8Tiq6SXCX+5y1KmbffvuiKtd/RHTaNnglDG1JlMRpf1nrmvkAVLsx4sO8LVEU5Llf7nbGL9x7xU+hNtR6Pe31HxH9RLwiaqIQs7EfcxsAUDy3P4mVgv2JYNjrZ7WiKXkhnjlOqpObyuYWU7PnmFrRlOj0frm3f0VTQrPnJOuXKjf1Xr71pLYpc7tybWchTvbDwYPZdXG6H4qtUzl5HRdOjmeueuTad/mGKMkUtkRL8fu2cPxYlwtTYtuufpX8c/A47S/7bcm+pYvKtkRVkOd+OdsZwKlCbazd9bSTdimK13QAysPTntsXX3yxV0W5YhiGVq1aVZZ1wzl6bgPecDvEQy5B91ILe/2sWtuSF9Qp1dXSwYMdn+d66ru13osXGTmHRQh6+63bJEkTz5VWP9wxbbceu167EycoqwdOajvtZMask5/M29Uz3/y56pmvTmHhdVxY953TuHG678ZPSOR8IGOuc6JcSt23qWEeCl0XWPeJ3/shDG1JlMRpf+Wqm1fXBXAnyHM/6HbGb9x7xYfb65KxZynrIdT5OoqE5ZqOeEXURCFmve653dXLwtatWyfDCLbBMU0z8HUCQNi0trm/gU19nlpu6XJTI4b78wCvsNfPTl2toZnTO9afmdiWOp76Xuhn7XW1Rmi237pNUjKxnXmjkfostX67xPbYs9Tpp6VO6vXi+sOOxoK1q2dKrv2Qa9+HmR9xYd131uNpx+m+a24xcya2Jftzoly82LcLb9unUSO76uSTci9jt0/83A9haUuiIk77K07bEgdBnvtBtzOAU07aJet1ydp1na87re1SFK/pAJRXWf/ca5pm+p+fywBA3NXVGmpsSL520zMr8+eujQ3+3fCGvX751p/5E0op2YM7JfMnlfl6roRp++2Gl0jdaKSktitXYttJjxs7Y0Z305RLDEfL5RoGw24/RLV3ol9x4WZIAqf7zumY22EZ/sCLfXvpzJ4aM7pbznntxsJN8Ws/hKktiYI47a84bUvUBXnul6OdAZxy2i5Zr0syrzut7VJUr+kAlJenw5IMGzbMfQX+r9e102rYzW8YhjZv3ux63QgWw5IA3sgXr14/RM5rYa+fVa6EnjXB6zThG6btd5K4tio2sW2N2Y2tCcfbE6eHwOXiV1x4te/cPEyyUFlBK3bftr0knfP55M8l3Ty4N6h4DFNbEgVx2l92dXJyHRvGbYmiIM/9crczfuLeK16cti/W2J14rnTlvKqcn4cltolXRE0UYtbrYUk8TW678dvf/lbXXXed9u7dK9M0ddppp+ncc89VbW2tTjzxRB1zzDGSpPfee0+vv/662tra9PDDD2vz5s0yDEM1NTX64Q9/qK9+9avlqD6KQHIb8AbxWpx8F96pzzLnsV5gF0pop4TlQtyOdR+4SXCX0mO71Jj16wY/iIRXuZNqpe67fIntVC+sfJ8HdS7Y7S8n+zDXciPrqnLGbKF9d/OCRMFx7J3Wxc22eLkcooXrgmAE+cfWuP9hl5itXFH8ow3xiqiJQsx6ndwuy7AkLS0tmjt3rvbu3at+/fpp0aJFevDBBzVlyhSdccYZ6t+/v7p3767u3burf//+OuOMMzRlyhQ9+OCDuu2229SvXz/t3btXV1xxhZqbm8uxCQCACFnRlNDsOfY/3019dvkVHfNYL7DHjJYWzK/q9JNKq7Fn5R/buJzs9kGuIUrsFJvY9oLdMBvjJyRKugnKFxP5NLckH4y0oikRinUUUsq+K5TYnlxv5Bw+JrWuIH4yb7efnex7u/1caN8Xuvle0ZRIj2Of4mQ/5FtvGOIIqHROEm9uhoQKy7qAoPlxTQcAgSe329ra9OMf/1imaap///5qbm7Wl770JcfLf/nLX1Zzc7P69esn0zR14403auPGjf5VGAAQaa1tpppWJV9bb/4yP3txfcc81oTei+uT8+ZL5EnJBHAYby7z7YNC22RVrhsOaz0zH65VTI/tXPsjn8yEQ9OqZDnlXIdTxew7J4ntXOVn8jvhYrefnex7u/2c+d7Ku029uP5wzmWkzvshc725xrG3k++YhymOgErlpkdpqUnnINcFlIuX13QAIJUhub148WIlEgkZhqGrr75aJ554ousyTjzxRP3bv/2bJCmRSGjx4sVeVxMAEBPJp7Tb3/xZP8vFzVPaly43Q5dIyrcPpORNRuZDqnKpqSlvz3S7ehZTp0L7w45dwiFfTASxDjfc7LvWNueJ7czy8yW4/Ton7PbzSy8r7763288vvZw9vMqsGUbWwySt+8RuP1jrYpfgtu6HQsc8bHEEVBon576VXdLZSRsY5LqAcvPqmg4ApICT23/729/0xz/+UYZhqH///iWNl/2Vr3xF/fv3l2maeu655/S3v/3Nw5oCAOIkX++mQj2XM28u8/VmzfXU97DItw+aW8ysXjO57N1b3p7pdvUstk5uerwVOw5kEOtwys2+q6s11NjQUY/M1/nqlLm9jQ3Keu3nOWG3n1P1zXzPbsghu3HDk9uZfYls3SdOe1JmJrit+8HpMQ9THAGVxum5b2VtD520gUGuCyg3L6/pAKBrkCtrbW3VkSNHZBiGTj/9dBlG8V+8VVVVGj58uJ5++mkdOXJEGzdu1Be/+EUPawsAiJPUTWIq8ZP6PzVucOZ7dvIltqVkEmviudLUxrI8zsIRu32wYaOZc5ztlOpq6eBBZS0bdMLMuv9rajp+xlpsnfLFRK71uk0WBrGOQorZd1Mbq3TGmNTDCI2M1/lNrjc0YnhHciXztZ/s9vPM6cmEj3Xfp+RObNvXN3ufOK/L2nXSxAnZbYPbYx6GOAIqldNz38raHoZtXUC5+HFNB6CyBXoHvmPHjvTrGie/fy7g6KOPTr/euXNnyeUBiI9if5LJTznjrZjxKZcuNzXvqoRtYjuVPEtZ/XD4e5zY9Swt5OBB9w/I85Jd0u7RNVWuj6WdQj3avUgWBrGOXErZd9bhMaxytZfFLlcqJz24U9wmtqVkvZ0mjqx1Wb1GJR/zcsYRUIky2yo3SeNilytlmVKWA4Lk5zUdgMoVaHL7gw8+SL/2YhiRd99917ZsAJVtRVNCs+e4vyhqbjE1e46pFU0Jn2qGMHDylHYruwRwKnkUxQc6Ta43spLVTrh5QJ6X8iXtvNr3TmKi1GRhEOuw8nPfhbWdtduulvs717FplbtkcDH19uOYlyOOgEoU1jYOiLIgrukAVKZAk9vHHnusJMk0TbW2turAgQNFl3XgwAG1tramp/v3719y/QBEX2ubqaZVydduLooyL7aaVtGDO+4KPaW90EMmrcmjqF2QN7cUHorEbj8EneB20hvVrwS3NSa8SBYGsY4UP/dd2NvZfPs5JTXMjuQksZ0out5+HPMg4wioRGFv44AoCvKaDkDlCTS5ffLJJ0uSDMPQgQMHdM899xRd1j333KP9+/enpz/xiU+UXD8A0VdX6/6iyO5ii592xl++p7TbfWadx668KFyQFxo7XMrdK10KLsHtZpgFLxPcuWLCK0Gsw+99F4V2Ntd+rq7Ofq+6Ov++v2vlfi1ZVlq9/TjmQcQRUKmi0MYBUVKOazoAlSXQ5HZtba0GDx4sKdl7e/HixXr66addl/P73/9et99+e/qBlIMGDVJtba2ndQUQXW4uihintHLle0q73WfWeezYxV6Yem61thVObFvlSnBPnNAx7fV2Wuvp5Lz0Yt/niwmv+L2OoPZd2NvZXPs5s8e2lJyed5X98AF3rdyvhbftS08XW28/jnkQsQpUsrC3cUBUlOuaDkBlCTS5LUlTp06VaZoyDEMHDx7U7NmzdfPNN2tvrixChr1792r+/Pm67LLLdPjw4XQ506ZNC6DmAKLEyU0JNyOVy+4p7SlLlxdOAOe7yc2MvcaGcD3gqa7WUGND4fms22c9nxobpCuvqPJtOzPr6ea8LGXfF4oJL5KGQawjyH0X1nY2335OyezBvXZd5wR3c0vCs8S218c8iDgCEN42DoiSclzTAag8hmmagV4Bm6ap+vp6bdiwQYZhpBPU3bt312c/+1nV1dXphBNO0NFHHy3DMPTee+/pjTfe0MaNG/XHP/4xK6ltmqZGjx6tlpaWIDchUIcPH9bWrVu1ZcsW7dmzRwcPHtTRRx+tAQMGaPjw4TruuONKXsebb76pTZs2afv27UokEho4cKCGDh2qU045xYMt6LB7925Py/OSYRjq06ePJKm9vV0BnxbwUa6bjiBuRlrbzKIuxAotR7yWxmlMZBp7Vv6HStrJdRz9igs3bl6Q0OqHO6ZnTjc0Yrj00svKe16kes1k1sNJvYqN2aD2VRDtRNBtkZt9kDlvMcuVs521slunpE7n9szphjZszB57fuxZ0oL5VZ3KmDXD0EUXlp7Y9mK/hGlfIzwq5bqgXN+fdt+ZTs47L7+346ZSYhYdwnD9WyziFVEThZjt27evp+UFntyWpPfee0+XXHKJXnnllXSSWlJ6mJFcMuczTVOf/OQntWrVKh199NG+1zloO3bs0J133qnVq1fn7dU+dOhQ1dfX61vf+pa6dOniah1PP/20lixZog0bNth+fuqpp2ratGmaMGGC7edukdxGudj1cvP7AVwrmhJqWuW+7FRdGxukqY32P64hXouX70Y0V3K7UPLbzTH2My7clpVirYsfSbIwx2wQ+6Mc+9wpr2KyHO1srjplrlPqnNjO/Nya4K6uzh66ZO7lvfTN8w+6jlk/jnmY4wjlFeY21ivl+v5Mrdf6R+5CbZyX39txVAkxi/ggXhE1UYhZr5PbZfmmPeaYY9Tc3KwLL7ww/V4qsW2apu2/zHkkqb6+Xs3NzbFMbD/++OM699xzde+99xYcruXPf/6zrr/+ek2aNEk7d+50VL5pmvrJT36i6dOn50xsS9KWLVt05ZVX6oorrtChQ4dcbQMQJtaflfqdcGltM9W0KvnazU/EMxMTTavE2HIeKyaxnclu7GnJ+TEOQ1zwpPpsQeyPMO9zL2My6HY2X51S65Q6/xLBup9HjTSyHpBqTWxPm9LTk7qUeszDHEeA38r1/Zm5XuvDlJ0ktotdLwAAcKdsf0bu2bOnrrvuOj3wwAOaMGGCunfvnvevCaZpqnv37po4caIeeOAB/eAHP1DPnu5vOMLuj3/8o/7lX/5Fe/bsSb/XtWtXffazn9WUKVM0e/Zs1dfX67TTTstarq2tTQ0NDXr//fcLrmPBggW65557st4bPXq0GhoaNGXKFH3mM5/J+kPCI488on/7t38rccuA8ppcb3Qad7WmRr4kXOpq3ScY7BIX5f4JXpyUktjOPH6lJLjLHRc8qT5bEPsj7Pvc65gMsp0tVCfJfogdu/08aqSRNQa3lOzB7VdiO8XpMQ97HAF+K9f3p3W9a9epU1thbeO4ngMAIHhlGZbEzqFDh/TSSy/p5Zdf1rvvvptO7vbu3Vv9+/fX8OHDNWLECHXv3r3MNfXPgQMH9NWvflVvvfVW+r0zzzxT8+fP15AhQzrN/9xzz+nKK6/UO++8k36voaFBV199dc51PPXUU5o5c2Z6uqamRosWLdLZZ5+dNd+mTZs0a9Ysbd++Pf1eqod4sRiWBOXkxZASpa4z17rc/pSceHWntc3U7Dn2+9f6WeY8UnZybPGijhvUXPGUOU8ufsVFPvn2gZu6Otk+O2GL2SD2R7n3uRtexWQ52lm7/TxiuArueye/1vinb1brumuPdhyzfhzzKMURyidsbaxfyvH9aVeeFWPfu1cpMYt4IF4RNVGI2ViMuQ17jz76qObOnZue/vjHP64HH3xQvXr1yrnM//zP/+iCCy7Qhx9+KEk66qij9Pzzz9v+EcA0TU2YMEFbt26VlAz4e++9V2eeeaZt2a+//romTpyog//3G90BAwbo8ccfV48ePYraPpLbKJdyjgXrxxipxKt7+cbqTH02ZrT04nr7Xt12Y2amPkst52ZczXKMnVvO8b7DGLNB7I8wjLHudp0pbmOynO2s3X52su/tElaljrntxzGPUhyhPMLYxvqlXGPPz7sqkXd8fuuY3CS286ukmEX0Ea+ImijELMntGLv22mv1i1/8Ij39wx/+MGtc8lzmzJmjxx57LD3d0tKiMWPGdJrvd7/7nS677LL09De+8Q399Kc/zVv2bbfdpjvuuCM9fc011+jb3/52wTrZIbmNcsh1kxNk75qbFyS0+uGOaad1yPV0cDfxWuqTyaP8ZHOrfHXKt73FLleIH7FZqB7lOp5BtrFu6po5b7HLeTmvF8uVotiYDEM76/bclXLX29pmz5ph6KILndfbj2MepThC8CrtOjboNidXz21rQtvr9cZZpcUsoo14RdREIWZj8UBJ2NuxY0fW9MiRIx0tN3r06KzpXA+W/O1vf5s1fdFFFxUse9KkSerSpUvOMoAwy3eTE9S4pCuakkmSzIcQLV1uavyERMFk0ew5plY0JUpa9+w57rcrte7LLi9t+VLq7od8CZ7UZ3bzFLtcIXYxWCgu8nGy34tNckUlOeY25jOHmXETs272R5T2eTExGYZ2VnJ/7uar95XzqjRrRseyS5a5q7cfxzxKcQT4zevvz3ysbUXm9ZzdGNxjz/L/OQMAACAbye0QSSSyb6qdDv9hfbBm5sMgUz788EP94Q9/SE8PHjxYtbW1BcseOHBgVpJ9w4YN2rVrl6N6AeXkpPeO34mX1jZTTauSr9euy74hyvdz/cy6N61KllPKut1sV+a6N7aWtnyxda8k1hjMjAs32O/exHyl7rtM+WKymJ//h/EBh87qXaW5l3cMCxeGegPo4KatKpZdW7FgflXWejOHJpGS13u0FQAABIvkdoh89KMfzZp+++23HS23bdu2rOkTTjih0zxbt27V3oyrvlGjRjmuV+a8R44c0fr16x0vC5SDm5+l+pl4qavNLtuuh09NjQomi4rpeWddt5Ptytc7qZjli617pZlcb6imxv4z9rtzXsR8pe47K7uYdNJWlaOddctNvadN6UmCGwgxJ21VsQr9KsW63szrO9oKAACCRXI7RD73uc9lTf/mN78puMyRI0eyxts+7rjjdOqpp3aa79VXX82aPu200xzX6/TTT8+afu211xwvCwSttc39eIt2iRevem9ay7b28Nm7t6OHj9djRbpJKDnpneR2eX6W60xzi5m3xzb73blSY76S910mu5jMbKvC1s46VUy9p03pmTVESTnqDcBeobaqWIXaCrv1HjzYuVMAbQUAAMEguR0if/d3f5eVmP7lL3+pp556Kuf8pmlq/vz5+n//7/+l35s9e7aqqjofVmtCesiQIY7rNXjw4LxlAWFSV2uosSH52k2yKjPx0tjg7Tilk+uNrBseqXMPn3lX+TNWpJNkX6lj5pIkLJ5137npwc1+t0fMliZfTKb2ZRjbWSeKr3dVWesNoDMnbVWx8rUV+dabOQQdbQUAAMEhuR0iXbp00cKFC9NPNT1y5IguvfRS/fCHP9TGjRu1b98+maapXbt26cknn1RDQ4Puvvvu9PKTJk3SBRdcYFu29WGVgwYNclwv67zbt293vCxQDlMbq7R4kftk1eR6Q4sXGZra6G3T2Nxiau267PesPXwyP/c60ZYv2VfqmLnlShIW2xsqTL2o7Pbdo2uye8tnCsN+j4owxmwUOInJ1L4MWzvrVBD1zmxn3LQ5xS4H+CmM37du2qpi2bUVduu98cedh6CbOEEF2wrOcQAAvGOYpsk3a8i8+eab+rd/+zetW7eu8MySjj32WM2ZM0ff+ta3cs7zL//yL1nDnDz00EOOhybZs2ePzjqrIwtXV1enX/ziF46WzdTe3u56maAYhqHevXtLSm4vpwW80tyS0JJlHfH0qbHS82s7Pq+uzh6q5FNjpQXzu+Qts9h4tdalpib7AUyzZhiaXJ/7ZqzU5b2yoimhlXebrteXqv+US8qXWLPWJcW6LdbPM5Vrv5eiXG1sWGI2CtzGZNz3XbExm9k+HTwox21VZvtUXa3QtFWIBr/a2DB+35arrbIrN/Mcl+R4vWG6HikX7r0QJcQroiYKMZvq1OsVktsh9qtf/Uo33XST9uzZk3Oe008/XT/84Q9VV1eXt6zp06fr6aefTk8/+uijOvnkkx3V48CBA1nlDx06VL/+9a8dLQtUsrtW7tfC2/alp+de3kvTpvTs9L5Var4g6uR2naUuX6oX1x/WxY0d2cli631PU43GjO7mSx3d1iXXNhSKk3zLokO5YzYKio1J9mE2a/uUKd++yneul7OtQmUL4/dtudoqu/JGjezaaf9IKrjeMF2PAAAQF5X5p+KQe/XVVzVlyhR9//vfz5vYlqRNmzbpn/7pnzR9+vS8w4UctDzFrnv37o7rY533wIEDjpcFKlW+G6tpU3qqd+/sn8T36NHxeuFt+3TXyv2+1Mtu3b17G45v+kpdvlRjRndL30BKzvaV3bEIe2JbSu7rzG21CnK/R1m5YzbsSolJP9uqKLK2T5ly7at8ie1ytlVA2L5vy9VW5Vqv3f5JfZ5rvWG6HgEAIE66lrsCyPbMM89o9uzZ2r8/eSHUrVs3/eM//qO+9rWv6ZRTTlHPnj3V3t6utrY23X///frDH/4gSXr66ad13nnnqbm52bZHdnXm0+skHTp0yHGdrPP2yMzCucCwJKgUrW2mFt6WSE/PmmHom+cfVHt78o9MzS0J7dmTHWMHDmQPWbLwtn0a+okDtg8jKiVe7da9Z4+p2+/Y5ehnu6Uu74Vvni8dOGCkf/678LZ9OnBgv+367X5GnHksglQoLuxYtzVT0Pu9FOVsY8MQs2HlRUzma6uirNiYzXfOWtuqfMMPlbOtQvT41caG5fu2XG1VofXarWPWDEOzZnRe70svm6G5HgkD7r0QJcQroiYKMev1sCQkt0PkzTff1GWXXZZObNfU1Oiuu+7qNOTIgAEDNG7cOI0bN04///nP9cMf/lCStGvXLs2aNUurV69Wz57ZPRl69cruSeQmuW3t9W0ty6kwnlB2TNOMTF0RTrUjpMYGqWlV8mFDF11opGPK+jCizDGAn1+bfMjk2nXJ5WtHFD5v3MRrvnUvWWbKNBN5H7JW6vJeSu5Tpetjt367Bz9lHoug5YuLfKyzlHO/eyHINjZMMRtGxcZk5vnntK2KMrcxa22fMqXiTrL/XCp/W4Vo87qNDcP3bbnaKifrtds/M6cnHzKZWm/bS+G6Hgkb7r0QJcQroqZSYrayuyyFzC233KJ9+zp+qvajH/2o4FjaF154oS688ML09BtvvKGWlpZO81kT0h988IHjelnnLTa5DVSSqY1VWrzIKHjz9+iaKs2c3jHP2nXSxAny4QFMhde9dLmp5hb7L75Sl/fD5Hoj5/rt6huGJKZdXOQTxv0eFew7Z9zGZMrkekOLF1Xuw9AKsbZPmZYuN/MmtsPQVgGZwvB9W662ysl67faPJC1eZKi62gjl9QgAAHHCHUlIvPfee3r88cfT0x/72Mf0la98xdGy06dPz5pevXp1p3kGDhyYNZ1vfG6rt99+O2t60KBBjpcFKlnmT1/z3fxZb4pWr5GnCTc367ZL9hVafuK5yrt8Lq1t+ecr9Hlq/db6f3l8ItQ3kk5/Eu32uN18a6JTGU442c9RU2rMZyp2/0RpvxY7pEixy4V1n3pdr3wJbjtha6uQW1hj2E92bef4CcF+3xZqc3Lt32KXc7q8ZL9/vn9NOP/QDgBA3JDcDomXXnpJR44cSU+feeaZMgxnFz9DhgzRRz/60fT0n//8505DiVjH4X7rrbcc182aCD/ppJMcLwvAWa8mtwm3oNZdaPkVTQmtfjg5nIqbuje3mJo9x9SKJvuE7IqmhGbPcbYPrPX/IOPZbFG9kSzmuK1eI827yl2Cu9BxiCIvzzc3cWitQ9z2q1fCuk/9qpfTBHdU26pKFNYYDoI1nlPDPEnlj+EwHJcw7x8AAOKM5HZIvPvuu1nTAwYMcLV85vyJRKLTwxutye1NmzY5LvuVV17Jmia5DTjn5ue6Xie4S133vKvy98hqbTPVtCr5eu065wnuzHo1rercYyqzXKf7YHK9Ictzc3VUL0XyRtLtcZs4oWN67TrnCe5CxyGKvDzfiolDax3isl+9EtZ96ne9JtcbqqnJXU5NTTTbqkoU1hgOkl08lzuGw3Rcwrh/AACIO5LbIVFtycocOHDA1fKph1CmWMfFHjp0qGoyrrQ2btzouOwNGzakX3fp0kWjR492VTegUrW2uf85ql3CrZibLS/WvXZdx2d2y9fVdp7fmuC21t0u+Wj9ua+1XCc3qvOuSsjygxV9sM/b4V2CUMxxu/KKqqz9vnaddPOC/AluJ8charw+34qJwzjuVy+FdZ/a18u7c6i5xczqwWm1d2/02qpKFdYYDpJdPJc7hsN0XMK4fwAAiLvQJbfff/99bd++XW+99Zarf1HXr1+/rOlXX33V8bKHDx/Wm2++mZ7u3r27jjnmmKx5unbtqs9//vPp6bffflutra0Fy96xY0fWfKNGjepUVwD26moNNTYkX7v5OWpmwq2xobhxbb1Y98i6wsvbJcRTiVZr3f3qxT7vqkRWIj7zb4VRe2BgscdtwfzsBPfqh3PfSIf1YZul8uN8cxOHcd2vXgvrPrXWa8kyU3et3G87r5t6WefNJWptVSULawwHwbo9mT2Uyx3DYTguYd4/AADEWddyV+CFF17Qww8/rA0bNui1115TIuF+vDPDMFwNsxFGp59+urp166bDhw9LktatW6d33nnH0fAkTzzxhPbt6xhkduTIkbbzffWrX9Wvf/3r9HRLS4vq6uryln3//fdnjQXu9CGXAJKmNlbpjDGm6wT15HpDI4YX/8A2r9bd2lZ4+dQNYeqGbu06aeKE5PpTirmRtJab+j9zOWtie+xZyURv5vrslguzYo/bgvlVunlBcgx0yX6745ZosfLjfHMSh3Hfr14L6z611mvhbclrq2+e3zGPH4ntlKi1VZUsrDHsp1zbE6bv23IelyjsHwAA4qpsPbf/8pe/aNKkSbr44ov1wAMP6M9//rOOHDki0zSL+hd1vXr10tixY9PTBw8e1I9//OOCy+3evVvz58/Peu8LX/iC7bzjxo3TKaeckp5evXq1XnjhhZxlv/7661qxYkV6esCAAfrHf/zHgnUCkK3YBHWh5V5cf7ioMpwMc5Jazmnd7R5u6PShlG7Kzez5lCuxXWi5KCg2Zq6cV1X0w0Hjwo/zrZSHrhYS5bF3S+HnPvWyXgtv25ceosSrxPbM6bkfMhm1tirqij3/WtvM0MawH/JtT9i+b8txXHKVWyhOcqnU7wUAAIplmGXIDG/atEmXXHKJ3nvvPZmmKcMw0glqw+j48s+sWub7dp9t3rzZ51r7b/369brwwguz3vvyl7+sa6+91rYHd1tbm7773e/qtddeS7937LHH6ne/+12nMbdTnnrqKc2cOTM9XVNTo0WLFunss8/Omm/Tpk2aNWuWtm/fnn7v+uuv16RJk4raNimZiA8rwzDUp08fSVJ7e3ss/mCC+DIMQ/f9vLvuWLpfs2YYuuhC5zdmqRuwxobsntVesftJbubYk8XeSFrLra5W1hjbmYntfMtFPcHglF/HoVhxaWML7ddccVioPL/OxygIW6ym3PdzU0uWFVevQont1HJO54M/VjQl1LTK/b62nrdhiGE/21in36Nh+74N6rjk2m5rfLndj3H/XojLdQEqA/GKqIlCzPbt29fT8gJPbr///vuaOHGitm3blk5qd+3aVaNGjVLv3r31+OOPJytmGPrGN76h999/Xzt37tSmTZt0+PDhdJK7X79+WWNI33jjjUFuhm8WLlyopUuXZr3XvXt3nXXWWTrllFPUq1cvtbe3a+PGjXr55Zez5uvWrZvuvPPOTolqq1tuuUV33nln1nujR49WbW2tqqqqtGXLFj377LNZJ8CECRN08803l7RtJLcBb7S9JF36nY4hnJzeoFlvrBYv8uehVrkSNqXeSOYqt1BCMWw33EHx6zgUI05tbKGhJsJ2PkZBmGI1xTAM/devqtNDk2TyIrFd7PzwRmubqdlz3H8v5Dpvyx3DfrWxbr8/w/Z96/dxyddj2y6+Cu2fSvpeiNN1AeKPeEXURCFmI5/cXr58uW699dZ0kvozn/mMbrzxRg0YMEDbtm3TuHHjkhWz9MY+dOiQ1qxZoyVLlqQT4+eee65uvPFGdenSJchN8N3tt9+uO+64I2us60L69eunm266Seecc07BeROJhG644Qbde++9jsoeP368brrpJlVnPqWtCCS3AW/YJV3CdsM5fkIiq4dUTY306JrSeyB9aXxCGY8YUHW19MRjhcutpBvGTH4dB7fi1sZa96v1lwRhOx+jICyxmpKK2U9/fpf27Mnu/ZmrXtaEVqZiE+KV0laVg9eJ23LGsB9trNd/ACgXv45Lof3jZAxuKfcfSOL+vRC36wLEG/GKqIlCzHqd3A78rqGlpSWd2D7ttNO0ZMkSRw9N7N69u775zW9q9erV+uxnPyvTNPXwww/r6quv9rvKgbvsssv0X//1X5owYULBhHL//v01Y8YM/frXv3aU2JakqqoqXXPNNVq+fHnOh09K0imnnKL58+dr4cKFJSe2AXhr2pSemnt5x/BD+cZwDPqGqbnFzLqRlJI/BS51DM7mFjMrsS0lE4pOys0c87KxobQHdUaFX8eh0tnt14MHk78gSAnT+RgFYY3Vu1buz0psS/nrVVdrqLEh+Xrm9OzX+Y6xtX2qtLaqXNyMheykx20YY7gU1ngu5lkZ5Y5hP49Lof2TK77s9g/fCwAAlCbQntt/+ctf9A//8A/JFRuGVqxYoU9/+tPpz/P13M504MABfetb39KWLVtkGIYWLVqULjduDh06pE2bNunVV1/V3r17deDAAR111FHq27evTj/9dJ100kmdxiN364033tArr7yinTt36siRIxo4cKCGDh2qU0891aOtSKLnNuCNzHi9/Y5dWePCOu055Jegxtzu1UtZiW6n5ba2mRWRLArDGLCZ4tLGOhlzO/Mhp+U+H6MgbLGaUsqY25ntjJs2p9jlUBq3Q0UU+jxuY24XG4vljuGgjkuh7cw3dEklJ7bjcl2AykC8ImqiELOR7rmdOUZ07969sxLbbvTo0UPf/e5309OrVq0quW5h1b17d40cOVIXXHCBGhsbNWvWLF188cU699xzdfLJJ5ec2JakE044QePHj9cll1yiqVOn6utf/7rniW3AS8U+RT4uT5/P3I7J9VU5e55Zb5gmTlCgie2Z0w09uiZ3/QpJbadduf/9aO5y8x1nL2+0wxqHXh+HqPDreOSLQ+t+Xbsudw/uKCQwgo7psMZqc0t2YnvWDHf1ymxn3LQ5xS6H0uTrwV3ovL351kRRMRyl65FiYzFMiW0/25ZC25krvio5sQ0AgNcCTW6neu4ahqFhw4Z1+tyaqD106FDOsj796U9rwIABMk1T69ev144dO7ytLIBQWtGU0Ow57m9ImluSYyOuaEoUnjnEVjQldOl3Erpr5f70e3Y3TuMnZN9wjz1LWr1Gvm1/vhs0Nz/9Tkkd53lXdU4c5Ct33lWJQI5zWOPQ6+MQFX4dj2LicO066fiPdpRhdz6GMYERdEyHNVat9Zp7eS9Nrq8qe73gLyffo9bz9vIrElq9RrafF0qYx+F6JKzC2LYUE18AAMC5QJPb7733Xvp1v379On1uHdd5//79nebJdNppp0mSTNPM6hUOIJ5a20w1/d8PNdzckGTe6DStilaPqUyZ27/wtn15E9y5hkrwY/ud9Dxyc0OZuZ35hniwK9fP7bSrX5ji0OvjEBV+HY9S4vAvf81eVxiG2cgn6JgOa6zaJbanTelZ9nohGPm+R+16bL+4vuPzsWd1/mVUrj/AxuF6JKzC2rbYrTfs3wsAAERJoMntbt26day4qvOqjzrqqKzpnTt35i2vd+/e6dd/+9vfSqwdgLCrq3V/Q2J3oxPVn3tbt3/hbfvU3NLR82tyvaGamuxlqqs7J+a83H43P6l1ekNZV2tkDe0g2ScOMsu1m9+v4xzGOPTjOESFX8fDizjs0iV7uqbG36GBihVkTIc1Vq31mjXD6JTYLke9ECy771HredvcYmb12JaS37N2MZDrD7BStK9HwiisbYt1vYXiCwAAuBdocvuYY45Jv37//fc7fd6jRw/17NlxI/HGG2/kLS+zJ/iePXs8qCGAsHNzQxLHsQwn1xuaNaNjG5Ysy/6pc2ZPIEk6eLDjtdfb39rmfv/aHT+7HrOZCQApd+JASr5vN7+fPeLCFId+HYco8eN4eBGHR45kT+/dm3v5cgsipsMaq/b1yn+JHLdzCEl236OZ5601VnKNsZ/J7g9fE88loemlsLYtVoXiCwAAFCfQ5PbHPvax9Ovt27fbznPyySenX7/44os5y7IORdKrVy8PagggCpwkYeKY2E6ZXF+luZd3tHnWnzpLyR7bmfL1OC1WXa2hxobkazf7N/P4NTZ07mGdWW6hxIH1OKfmtyvXa2GJQ7+OQ9R4fTxKicPMMbclZfXUC3MvX79jOqyxGtZ6IVjW2LY7b62xsmB+4YcUWv/wNWa0dOW8QG/BYi8K57CT+AIAAMUxTNMM7Jv03Xff1Wc+8xlJUvfu3bVx48ZOw5Ncf/31+vnPfy5JOvbYY/X444+rR48encp6+OGHdeWVV0pKPohy6dKlOuecc3zeApQi9UDRMDIMQ3369JEktbe3K8DTAiXIlWQppVdhMTc2xS5XrFS83rVyvxbetq/T55ljbGfyK8Hv135Lfe72OAd9PLyOw2I52W67eYpdzs28TtpYr46bX+2C03Kt51+54qEUfse0n21tKWVLHcktN9cFQbc58F6p3zNOl594rj+Jba5jk8J6HReW64QwIWYRJcQroiYKMdu3b19Pyws0uS1JX/7yl/XGG2/IMAzdd999Gj16dNbnzz//vC655BIZRvKL/Qtf+ILmz5+fNR73s88+qzlz5uiDDz6QaZrq1q2bnnvuOR199NFBbgpcIrkNP9j1hCnmIT0rmhJqWuX+xiK1/sYGaWpjMD2xMuN16vR39fzajs+qq7OHIsmVaIsar46zX8JePymYGM+1jkJtrNfnkV/Ho1C5hc63KCUyohDTVl7GONcFlaPQeen0vC3nOUO8hpdX8RU3xCyihHhF1EQhZr1Obgf+m7hPf/rT6ddPP/10p8/Hjh2rU045JT395JNP6vOf/7xmzpypf/3Xf9X555+vqVOn6v3335dpmjIMQ1//+tdJbAMVyounz7e2mWpalXzt5qehmTckTav8HePZzl0r92cltqXOY2w7+cl0FHhxnP0U9voFEeNhOo/8Oh75ynXyh6QoPYgw7DFtFab4Q3Q4SSw6PW+jds7Af17GFwAAyC3w5PaXv/xlSckxs3/1q1/piOVpS4Zh6Ac/+IG6dOmSfu+DDz7Q008/rUceeUSbNm1KJ7UlqX///po3b15wGwAgdEp9+nxdrfsbC7sbliB/lm4dksQ6xnbm9sflxqnU4+y3MNcviBgP23nk1/GwK7e62vkvJKJ0PoY5pq3CFn8IPzc9Zt0kuKNyzsBffsQXAACwF3hy+6yzztL3vvc9XXXVVWpsbNSuXbs6zXPGGWfolltuUY8ePbIS2VIy+W0YhkzT1Ec+8hHdeeedOvbYY4PcBAAh48XT593cWJT7J6StbWZWYnvsWdk9tqXO22+3fVHroejFcfZT2OsXRIyH6Tzy63jYlWv9xUSh7YjK+Rj2mLYKU/wh3Frb3B9/J+dt1M4Z+MOv+AIAAPYCT25XVVXpkksu0ZQpUzRlyhQNGDDAdr6vfOUreuSRRzRp0iQNGDBApmmm/33sYx/TrFmz9Mgjj+i0004LeAsAhImXT593khgJQ0KkrtbQpTN7SpI+NTa7x2i+7c/cvsYGRaqHopfH2Q9hr19KEDFuv46Ep+soxK/jka9cKfmHJqfbEfbzMSoxbRWVdhzlVVdrqLEh+drN8c933kb1nIH3/IgvAACQW+APlCzWgQMHtHfvXvXu3VvV1t/fIxJ4oCS85sfT51vbTL30skL9VPtUvF7/7+/rF//V0WXUaT1b28xI3TCVepyL3V6ny/kRh37zqs759pG1rLmX99K0KT11+x27tGRZcIltr46HX+WG8XyMYkxblboNXBdUBq++H8p9zhCv4eT39UeUuYlZ9iPKjTYWUROFmPX6gZKRSW4j+khuw0v5bhhXNCXSDxaz+7xQmY0NUnW10akHVlgeDmUYhv7rV9VZQ5NY6xOlJFQ+hbaj0OepWCg2kdnYIE1tzP0jp1LrV052vQzdxLiTfWtdR+/ehvbsCT6x7fTzoMsNozhtaykxznUBnArDOUO8Imqcxqzf13GAE7SxiJooxKzXyW1aegCRk+9GsbXN7JTYlgr/JDizzKZV0ojhyvppe1gS25LU3JLIm9iW4vFwIicJgXzbmRkLbrbfGgu5xrwstX7lZq2bmxh3um+t68hMbEvJ88wrfh2PqB9nN+K2raXEOOBE3M4ZIEz8vo4DAMQHyW0AkVLoRrKuNvsmMlOuC2O7Mutqk+Vax9StqXE+pq4fmlvMrCEdZs3InaCJ8g21m55uubbTGgvFJjLtftLqRf3CoNgYd7Nv7dYh5d63xfDreMTlODsR120NYzuOeIjrOQOEhZ/XcQCAeAk8uf39738//e9nP/uZjhw5UlQ5u3fvTpdz9dVXe1xLAGHk9Onz1pvITNanz+e7OW1uMbN6+knJnn/luiG1bv/cy3tpcn3+ZtzuhjrsPVicHudMubbTj0Sml/Urt1Ji3Om+tVuHl/w6HnE6zoXEeVvD1o4jHuJ8zgBh4tcfpAEA8RJ4cvvBBx/UQw89pIceekjLli3TpZdeqoMHDxZe0GLfvn3psh588EEfagogbNw8fT5Xgjvz6fOFEtvWsVpTytXjKnP7Uw/ncyJzX2Ruf1i5Oc6Zcm2nkxsjNzdEXtevXLyI8UL71rqOTF6dR34dj7gcZyfiuq1hbMcRD3E9Z4Aw8vo6DgAQP4E/UHLYsGEyDCM9oLlhGBo5cqSWLVumGrvfLeewbds2jRs3Ll3G5s2bfakvvMMDJeEVN08/z3Wx6yax7WSZILW9JJ3z+eQDGNzEa9SeGl9sfXMt5/Vx9bp+QfJ6X9gtJ6lTYnvu5b104MD+rKF1vDqP/DoeUT7ObsVpW0uNca4L4ERYzhniFVFTTMyG/foc8UUbi6iJQsx6/UDJsiW3U1KrHzp0qFasWKGPfOQjjsohuR09JLdRLna993I9WKzQBXKhz4NI8hCvxXMTC3FVSozni+98vbSljl8btLe36977Er6cR2FMskZB3PZ3qe24VFntbNyOfyWqpHgtN84XbxQbs1zHoRxoYxE1UYhZr5PbZX2gZP/+/SUld/yf//xnXXjhhXrjjTfKWSUAMWT9OaPTxPbYszo/dCzfTyObW0zNnmNqRVPCj82AB5zGQlw5SerlivFC8Z1vrPtZM4ysYXTynUcrmhKaPcf9kBGcf8WJ2/4uJcYrUdyOP+Anzpfyq/TrOACAvbIkt1N/NVi6dKmGDx8u0zRlGIa2bdumCy+8UK+88ko5qgUgxibXG7KOfFRTo5yJbUlau87+oWN2iZF5V3X0RG1aJR4SFWKFYiGuCvWszmQX48XGd3Lfdr7csFvHzQsSalrVMe00gZC5bZx/zrW2mbHa325+mk6CO37HH/AT50t4VOp1HAAgt7L23O7Xr5/uueceffrTn04nuHft2qWLL75Yzz//fDmrBiBmmlvMrN4dUrK3R3OLqda2zj22U3LdwFgTI2vXdXw2c7rBT09DLF8sxJU1xlPy3aDn6omdK75zrSO5b5319l79sDRxgrP6pdglNDn/nKmrdZ/gDev+tsafkx58dgnuSko8xen4A37jfAmPSryOAwDkV9bktiT16tVLy5Yt01e/+tV0gvuDDz7Q9OnT9dhjj5W7egBiwG58vpSly0299LLU2JCcnjnd0IL5VY5uYCbXG1mJ8NTy9BwJr0KxENcbo7paIyvGi+2xmi++X3o5ezpz3y5ZZuqulfttl8tMMDY2SFde4ez8k9z11IU9Nz2Yw7y/rTHutF7W+Ku0xFNcjj8QBM6X8qvU6zgAQH5lT25LUrdu3XTrrbfqwgsvTCe4Dx06pCuuuEL3339/uasHIMLsbi4eXdM5eVZdbWjxoo4bDyc3MM0tZqce29y4hJfTWIjrjdHUxqp0jDuNb6c35k727cLb9uVNcC9eZGhqY1V62sv6Ib+47O/MGHfDGn+VJi7HHwgC50v5VPp1HAAgt9BcxRuGoeuuu06zZ89OJ7iPHDmi66+/XnfccUe5qwcggvLdXNjdnFh7nhZ6eCQ3LtHhNhbiemOU2SvVq/h2s28X3rYv5xAl1h6znH/BisL+djJkSK4hc4pZrpR62M1T7HJBiMLxB8KC8yV4XMchaor9Pq+k4dEALxlm6umOARk2bFhyxYahJ554QkOGDOk0z3333aef/OQnMk0znei+6KKLdM0116Tn2bZtm8aNG5cua/PmzcFsAIq2e/fuclchJ8Mw1KdPH0lSe3u7Aj4t4AOnNxdO5rP7CWQ5n85OvLrjZSzEUSnx7XSf3fdzU0uWFbdvw3b+xV1Y9/eKpuTDRt2uP7U9jQ1y1TM7VzvrpB528zipR7F19VJYjz/y47qgPDhfiucmZrmOQ7m5bWODvmYBrKJwXdC3b19PywvlGXPRRRfplltuUdeuXWUYhkzT1H333ad58+bpww8/LHf1AIScm4tbJ709rPNw4xIdXsdCHBUb3+72bZXmXt4rPe1m33L+BSuM+7u1zVTTquRrN7GTGaNNq0rvDeWkHnbzOKmH13UtVhiPPxBWnC/+4zoOUROWaxag0oQyuS1J48eP17Jly9SzZ890gvvRRx/VzJkztX+//ZidANDa5r7Xht3FsPWCYnK9kfXQGinZQ4cbl/DyKxbiyG18F7Nvp03p2SnB7XTfcv4FK2z7u67WfcLCLiFS6sMindTDbp5C9fCjrqUI2/EHwozzxT9cxyGKwnLNAlSa0Ca3JenTn/607r77bvXp0yed4H7mmWd0ySWXqL29vdzVAxBCdbWGGhuSr930msm8GG5s6Dz+anOLmdUjR0r20KFHSHj5FQtx5Da+i92306b01KwZ7vct51+wwri/3fTI8/On6cX82idfPcL4M/owHn8grDhf/MN1HKIqLNcsQCXpWu4KFFJbW6v77rtPU6dO1fbt22Waptra2jRz5sxyVw1ASE1trNIZY0zXF7OT6w2NGG6f2M41pmLqfS5CwsnrWIijYuO7+H1bpeGfTLhKbHP+BSfM+zu13lQ97OoTxE2ik3o4EcYb2jAffyBsOF/8x3Ucoios1yxApQh1z+2Uk046ST//+c910kknpd975513ZBic+ADsFXsx6+Tn4o+uqQrNmH48ibswr2IhjkqNb7/3bdjPv7iJwv7O1xsqyJtEN/Uod12disLxB8KC8yU4XMchqsJyzQJUAsMM+LGZw4YNSyeln3jiCQ0ZMsTxsnv27NH06dPV2tqaLsM0TRmGoc2bN/tSX3hn9+7d5a5CTlF4miyCV+iio1wXJal4Xbxkn+5Yup8ncaMoQcZ3MW1sWM+/uIra/s7XY1IqvX5OY9ZJPST5WlcvRO34IxvXscHifCkdMYsoKTVe/b5mAayi0Mb27dvX0/LKktUodsf27t1bq1at0mc/+1mZphnKAwQgHpzcmJTzqewvrj+sO5bud71ensQNKfzxHfb6xU0U97e1PuW6SXRSj7DUNZcoHn+gXDhfALgV9usAIA4C77m9bdu29OtBgwapS5cursv48MMP9R//8R/auXNn+r0bb7zRk/rBP/TcRlS47XETdA+dVLzetXK/Ft62L7T1RDiVI77dtLFhP//iJur7e/yERNZNYk2N9Oia0vtuuL0ucFIPv+paiqgffyRxHRsMzhfvELOIEq/iNYzXAYinKLSxke+5fdxxx6X/FZPYlqSuXbtq7ty5uvHGG9P/AMALrW3ub0TseugE0SN62pSemjWDJ3HDubDHd9jrFzdR39/NLWbWTaKU7A0VdA9JJ/UIS10zRf34A0HifAFQijBeBwBxwp+JACBDXa2hxobkazcJ4MwbmMaG4B5iM7m+8MOLSGwjJezxHfb6xU2U97fd+JUp5RxCx64eYamrVZSPPxA0zhcAxQrrdQAQJ4EPS4LKxbAkiJLWNrOoG5Bil3PDLl5zJbBJbMNO0PFtGIZefe0ojRndzVEbm7me1Gsn67abJ4hzMurC3N7ZCaK9c3Jd4LQemcLYNkft+KMzrmODw/niDWIWUVJKvHKPhnKIQhvr9bAkJLcRGJLbgDdyxStP4kZYrbzb1Mq7Tc29vJe+ef5Bx21sKqZH1kkbW93HcGr5xgZpaiM/VouDQjeDXt0sFroucFsPP+sKcB2LqCFmESXFxmtQ1yyAVRTaWK+T2109La1E+/fv13vvvacPP/zQ9bJDhgzxoUYAEB2pi6HURRKJbYRBa1sysS1JC2/bpwMHDF10YeFYzLzg39iafC817SSWM5dvWiWdMYZec1Hn5CbQ2g66iRkv6+FEEHUFAADBC8s1C1Apyprcfuutt/Rf//Vfev7557V582YdOHCgqHIMw9CmTZs8rh0ARM/kekMt95udnsTNRRLKpa7W0KwZ0pJlyQv2JctMmWb+mLTeEIw9S1q7LvnayYW/3Q0Fie1oc5NQ9vNm0Uk9cg1LYlcPbmwBAIiXsFyzAJWkLL/R/fDDD7VgwQJ96Utf0pIlS7Rhwwbt379fpmkW/Q8AwJO4EU6T66s09/Je6el8D8+xuyFYML/wg1PzLc8NQrS1trk/ppkPcZOSMdPaVlo76KQedvMUqocfdQUAAMELyzULUGkCT26bpqm5c+fqrrvu0ocffphOTBsGN54AUAqexI0wmzalZ8EEd77EtN2Fv5vlEV11tYYaG5Kv3RzTzJhpbFDJvfed1MNuHif18LquAAAgeGG5ZgEqTeAPlGxubtaPf/zjdDI7tfrjjjtOJ598smpqatStWzfX5d54442e1hPe44GSgDfs4pUncSPMMmP29jt2pYcokfLH6ojhnS/urfNNPFe6cl6V61hvbXM3Brfb+UtdDp0FeQzyXRc4Kc9unmKXQ/x4HctcxyJqgoxZvr9RqmLilbhDPn7HRxSuC7x+oGSgyW3TNPW5z31O7777bnrnjhs3TnPnztUnPvGJoKqBMiG5DXjDGq/33pfgSdwItUIxW1PT+QGoBw+aalrlbEzj6mrp4MHsdTY2SFMb7X+gllo+3zyZVjQlctYlH7frQXhwXQC/+NGeEK+ImqBilu9veIE2Fl4Kol2KQsx6ndwOtKV+6aWX9Le//U1Scmeff/75Wrx4MYltAChSc0v+xLbkbDgHIEjWmLQmtkcMl5pWJaft4nVyvaGJ53ZMWxPbUnJ5u/EKMxPjuebJ1Npm5q1LLm7XAyD+aE+A4HC+AQgb2iX/BJrc3rp1q6RkD+7q6mp9//vfD3L1ABArd63cbzu8gx0S3AibyfVG1rjwUrIH9+R6Q3W1heP1ynlVqq7OXf7M6UbBIU3s5rFyUherYtYDIP5oT4DgcL4BCBvaJf8EmtxODUthGIbq6up0zDHHBLl6AIiNF9cf1sLb9qWneRI3oqa5xczqsS0le3CnLvAK/UGmucW07bEtORvKpNiH/NjVxav1AIg/2hMgOJxvAMKGdskfgSa3e/TokX49YMCAIFcNALEyZnQ3XTqzpySexI3osV6oZfbgzrzAy3XxZ13easPG7M+8uDB0ciHKBSgAJ2hPgOBwvgEIG9ol73UNcmWDBg1Kv96/f3+QqwaA2Jk9q5eGf/Kgake4W25yfXJMYxLbKIdc48RnXsCl/p9c33ERZ/0sn7XrpHlXJbRgfpWnF4a56mKtf6nrARB/tCdAcDjfAIQN7ZK3DDPAx2Zu375dX/jCF2Sapk488UQ9+uijQa0aIZAaliaMovA0WSAlSvHa2mYWlUR3upzf5cMbqZi9a+X+vMPp5LuQK9Rbe+Z0Qxs2mlq7ruO96ursh016dWFo1/Pc+lBMLkCjfX5GqZ0tVZSPU5D82k9etCeVFK+Ih3LFLN/fKAZtLPzkR7sUhZjt27evp+UFOizJoEGDNHbsWJmmqddff12vv/56kKsHAARoRVNCs+e4f3Blc4up2XNMrWhKlLV8eKtQYlsq/sGnqbIWzK/S2LM63vcjsW1XT26MO+P8jAaOkzN+7ifaEyA4nG8AwoZ2yRuBJrcl6Tvf+Y66dOkiSVq4cGHQqwcABKC1zVTTquRrpwlKKfsv102rlPOBl36XD281tyQcPwDVLsE976pEzl7bNTXKKmvB/CpVV2fPU10tzy8MJ9cbWWOF29WlUnF+RgPHyZkg9hPtCRAczjcAYUO7VLrAk9ujR4/Wd77zHZmmqd/97ne69dZbg64CAMBndbXue+DaDUmR66fcfpcP77S2mVqyrGO/z5pRuAeCNcGdOdSI1d69yjr2zS1mVo9tKdmD++Zbve1h2txiZvWssKtLpeL8jAaOkzNB7CfaEyA4nG8AwoZ2qXSBJ7claebMmbrqqqtkGIbuvPNOffvb39YzzzyjDz/8sBzVAQD4wM0QE8U8NMPv8uGNulpDUy5J7uu5l/fS5Hpnlx6Zx3dkXefPM3s3pI699Thn9uBevca7C0S7sfGsdal0nJ/RwHFyxs/9RHsCBIfzDUDY0C55I9AHSkrSxRdfnH69ZcsW7dmzR4aRvODr0aOHjj/+ePXu3Tv9nhOGYWjVqlWe1xXe4oGSgDeiFq+FbvRLTZj4XT5KZxiGXn3tKI0Z3c11zLa2mXrpZdkew3wPmUzNc/OtCa1e0/n9YuWKJ+LMXlTPz6i1s6WK6nEKmtf7yav2pNLiFdFXjpjl+xvFoo2FX/xql6IQs14/ULKrp6U5sG7duqzEtWEY6R29f/9+bd261VVi2zRNV/MDAIKV+iJOfUGn/vfqhsLv8uOgtc3M+km8ddrr5eyMGd2tqOVyJbalzsfebp4rr6jS4EGmbXy4lS+e8sVhVBV7vDOX4/yMBo6TM17uJ6/bkxfXHy6qnS2lXQeiotK+vwGEH+2St8oyLImVYRhZ/wAA8WL3k+7xExKeJUz8Lj/KVjQlNHtOx0/arNO5NLeYmj3H1IqmhO10ELxKqrkZUqCUunixnrBwGidWdnHC+RkNHCdnvNhPXrcnK5oSurhxr+5aud/VtpSjXQeCVmnf3wDCj3bJe4H33JYUyi7xAAB/Wf8CnfnQDC8SJn6XH0Wtbaaa/m/UrqXLTb293UwP0ZGvB0DmBVfTKmnXroRWP6z09Blj/O/p5+SiL9ewJHbbVkoPCDdJ9jj0tLDGjeR+P1njhPMzGjhOzpSyn7xuT1rbTK28O/n+wtv26cABQxddWNr5CsRFpX1/Awg/2iV/BD7mNioXY24D3oh6vI6fkMhKBNTUSI+u8e6HRH6XHzXWC6ixZ0lr13V8XmjM2ELzO+E2Zlvbkr0J863Tbh4pe4iSxYuMTska6/bZzeO2LnbcridsvBxiIVNUzs+ot7OlispxKje3+8mv9uS+n5tassz78xXwSxBtbKV+f8N7lX5NAO8E1S5FIWa9HnObq1QAQGCaW8ysRICU7PHm1U+s/C4/iqw/aVu7LpmwTsn8iZsfie1i1NUaamzIv067eTK3tbFBthd9TuZxWxc7btcTNm5+Cuk0Ucb5GQ0cJ2eK2U9+tSeT66s09/Je6Wkvzlcg6ir1+xtAeNEu+Yee2wgMPbcBb0Q1Xq031DU13v7k3e/yo65Q4rrQdCn7r9iYdfKgM7t5il3Oy/lLXS4sCiXC3CS2o3R+RrWdLVXUjlO5lLqfvG5PUvF618r9Wnjbvpz1ILGNsAiyja3U7294p1KvCeAfv9ulKMQsPbcBAJFjd0P96Joqzx6S4Xf5cVCoB7dfiW2/FXvj6Xa5oNYTNvl6cBeb2Ob8DCeOkzNe7Ce/2pNpU3pq1ozSzlcgbir1+xtAeNEueY/kNgDAV/luqL14CrTf5ceJXYK7ujp7nurqcCS2VzQlNHtOcfEwe46pFU0Jn2pWeezOo/ETEkUntjk/w4fj5EwU9tPk+s6JdqfnKwAAQBSR3AYA+MZJT7FSEgJ+lx9H1v1x8GD255nT5UqAtLaZalqVfF1sPDStSpYDb1jjxskQDJyf0cBxciZK+6mY8xUAACCqQpHc3rx5s26//XY1NjZq3LhxOuOMM3Taaafp9NNPt51/7969euutt/TWW2/pb3/7W8C1BQA44eYn0MUkBPwuP84m1xuqnFVzRwAAo9BJREFUqcl+z7DsupoalS0BUlfrTTzw0z1v2cVNrjjh/IwGjpMzUdxPbs5XAACAKCtrcnvLli265JJLdP7552vx4sV6/vnntW3bNr3//vsyTTPnoOdr167VuHHjNG7cOH3pS1/S/v37A645ACCf1jb3Y3vaJQRy9bz1u/y4a24xs3rySZL1K3fvXpU1ceUmQcRYssGwixu7OOH8jAaOkzNR3U9Oz1cAAICoK1ty+1e/+pW+9a1vae3atZ2S2Ia1+5jFuHHjNHjwYJmmqf379+uxxx7zs6oAAJfqag01NiRfu0k0ZiYEGhtyPzTD7/LjzJoIthtzO6XcPTOdJLhJbAfDup8ze4RajwvnZzRwnJyJ4n5yc74CAABEnWHm6h7to8cee0z/8i//ItM0ZRhGOrk9ZMgQ9e7dW5s3b05WzjDSr61uueUW3XXXXTIMQ//wD/+gRYsWBVZ/FGf37t3lrkJOhmGoT58+kqT29vacvxoAwiBK8draZmbd0Func83rdLlUTzi3SYN85RWTgCh2uaBZEx5jz8p+eGSu90tNGJcas7kS2CS2g1Hs/i/H+eTVOqPUzpYq7u2eV8K8nzLj9fY7dmnJMtpLhFuxbWyYz0PEVyVdEyAeohCzffv29bS8wHtu79y5U9/73vckdfTQrq+v1+9+9zs9+eST+o//+A9H5YwbN06SZJqmXnjhBX8qCwAoSeaNxIqmhGbPse8xZv0sc7nmFlOz55ha0ZTotNxLLyvnZ07r5aR++eSrX5gUSmyPPavj9dp12dPl7uln14N7/IQEiZoA5EuIFepZX2wiodjl4n4O+yXo4xRVUdhPd63cb5vYlsIzFjhQLNp4AEAugSe3Fy9erP3798s0TVVVVelnP/uZfvCDH+j444+XVHhIkpQRI0aoa9eukpJ/ifjLX/7iW50BAKVpbTPVtCr52npDne+zzMRa0ypljVma7zMv65ePl3XwU6HE9szphhbMr8pKfIQ9wZ05liyJbX846ekZloRZ3M9hoJC7Vu7Xwtv2pafDfL4CbtHGAwDyCTS5feTIET3yyCMyDEOGYWjatGn68pe/XFRZXbt21UknnZSefu2117yqJgDAY3W1uW+oc31ml1hL9YDL95nX9cvF6zr4xUliO1fPvjAmuDPHjpWSY8mS2PaemyEMwpAwi/M5DBTS3JIomNhOCcP5CrhFGw8AyCfQ5PbGjRv1/vvvyzRNde3aVf/8z/9cUnmDBg1Kv96+fXup1QMA+CjfDbXdZ7kSa36NG+rmhj8qY5e2tmXXc+KEwmNp2yW4J57b8fnS5WbZej41t5hZPbalZA9uEjPessaNk/i2O3+CjpM4nsNAIa1tZtZQJLNmRON8BdyijQcA5BJocvvNN9+UlBx6ZMSIETr66KNLKi9z+ffff7+ksgAA/nOT4E4JIrHtpH4pUbphqqs11NiQfD1zuqErr6jKmnbSs6+xQbpyXlXWdDl6Pln3e2YPbnoeessaN07j2xo35YiTuJ3DQCF1tYamXJKM37mX99Lkeme3d2E4XwG3aOMBAHa6BrmyXbt2pV8PHjy45PIyx+c+cuRIyeUBAPyXusFI3Xik/i904xHUzUq++kXxhmlqY5XOGGOmExfW6Vwm1xsaMbwj4WGdDlKu/Z75vtM4KuSXDyZ0wXnZyaHWtsL7q9jlwsppnFiVM06k5D4v5hwux7Eqdp1Rjiv4Y2pjlf7unKM0ZnQ3tbcfdLxcuc9XoBhxu04LK76jAERJoD23vU5G79mzJ/36mGOOKbk8AEAw7HrejJ+QyLohyfeZ3zcrTuoXpRsm602G05uOYpfzUr4bVa/Hjr3s8oQW3ibNuyqRfm9FU0Kz5+Qvd95VyeUuu7xjueYWU7PnmFrRlMi5XNgVe7zLdVObeazcnMPlOFZO4spOHOIK/hgzultRy5GEQhTF7TotbPiOAhA1gSa3+/Xrl369c+fOksv785//nH7dp0+fkssDAATHemOSOZbyzOn5PwviZqVQ/bhh8p+THlheJbh/+WBCG1uTr9euSyasW9tMNa3KX+68qxLpccw3tibLyax30yoxlm0A7I6Vk3O4HMfKSVzZIa4AoAPXaf7gOwpAFAWa3E4NRWKapjZv3qzDhw8XXdbrr7+uHTt2pKdPPfXUkusHAAjW5Hoja+xkKTmW8uR6I+9nYagf/OXmp8VeJLgvOK9KY8/qmF67Trqn2cxbbmZiW5LGniXt3290qjc9I/1XV2sfA/nOYbsYC+JY5aprPuWqKwCEGddp3uM7CkAUBZrcHjVqlHr06CHDMHTgwAE98sgjRZd17733pl/3799fJ510khdVBAAEqLnFzOppIyV73jS3mHk/C0P94J/WNvdjZtoluN32Glowv3OCe8NG+wS3XWJ71MjOiW1usINjFwPzrkrYnsPzrirvz9fd/EGGMWQBwB7Xaf7gOwpA1ASa3O7evbs+9alPyTRNmaaphQsXaq/128iBF198Uf/5n/8pwzBkGIa+9KUv+VBbAICfrBfDmT1vli7P/1kQNy2F6seNk3/qag01NiRfu7lJyrwZa2wobixZpwluEtvhZL0hzzxOmedw5vvlOlZOkgckDQDAHtdp/uI7CkCUBJrclqRZs2ZJSj5ccseOHZoyZYreffddx8s///zzuvTSS5VIJGSaprp06aIpU6b4VV0AgA/sLoYfXVOVdRGd7zO/b1qc1I8bJ39NbazS4kXub5Im1xtavMjQ1MbiL3GcJLhTSGyHz+R6I+v4Scnj9OiaKtv3y3ms8iUPSBoAgD2u04LBdxSAqAg8uV1XV6evfe1rMk1ThmHo5Zdf1le/+lUtXrxYr732mhKJzk/WPXLkiJ577jnNnTtXjY2N2rNnT3r5b3/72/roRz8a9GYAAIpU7MWwVw8OLKV+QdUBScWO1+jFOI92Ce5ld3Y+1i+/rKLimQct+ae5JbtnvZQ8fuMnJGzfL/c5bNeujJ/QediUEcOLK59YAxAnXKcFy+l3FIltAOVkmKYZeGt/4MAB1dfXa9OmTTIMI52olqRu3brp0KFDycoZhj7+8Y/rr3/9qz788ENJSs9rmqZGjx6te++9V126dAl6E1CE3bt3l7sKORmGoT59+kiS2tvbVYbTAnAsyvGa74bE+lmmfPN5eUHttGx6q7gT5Zi1jq2dj9M4SMVPY4NK6mGOzqzn5tizZHv8rO9bj105YjZXGzhzuqGDB001rXLf1hBrlSHKbSwqU7Exy3Va+eT7jor7vqWNRdREIWb79u3raXllucrt0aOH7rrrrvT426nEtmmaOnToUNb066+/rsOHD6cPRiqx/ZnPfEbLly8nsQ0AEeEmsT1zeu6eN371ynFzI0TPoMqxYH6VDEsYGIZ0VK/s96qrnQ1vkRlnTavoVeslu3N4wfyqrHFYpeS4rAvmh+/n65PrDdu6jhiejBXJXT2JNQBxwnVaeeX6jop7YhtANJStC0e/fv3U1NSkf/3Xf1Xfvn2zktep/zP/Sclk9zHHHKO5c+dq+fLlOvroo8tVfQCAC61tuW9Icn1md2OSSs7k+8zr+uXidR0QTvOuSsja2cE0pQ/2Zb938GBy3nzsbsy9GEIFuc/h5hZT1meX792bPBZhO4dz1fWll+U6SUOsAYgTrtPKL9/3KQCUW1l/n2gYhqZNm6annnpKP/nJT/S1r31NAwcOTPfOTv2rqanR3/3d3+maa67RE088oRkzZtBjGwAipK7WUGND8rX1hiTfZ5k3Jo0N2WMp5/vMy/rl42UdED7WIUmsPbilZI/tlLXrcie4+Ym0v+zOYes+z+xxlkoQh+UcLlRXyXmCm1gDEDdcp5WXk+9TACinsoy5XYhpmtqzZ48OHz6sPn36qFu3buWuEjzAmNuAN6Icr61tZs4bCz8+87J+fixXKaIYs9bE9tizpFEjjU7jTaYeOmmdd8H8jv4DJBuDkzoXc+3zXO9bz+EgY9ZNXaX8DzAl1ipTFNtYVLZiY5brtOC5/T6NI9pYRE0UYjYWY24XkjoQAwYMILENADGS78bCzWeZPyt1c7NS6Oeoxd74RO2Gqdif5VbKz3mdJraljqR2Ksmdei/Vg7uSbv7CIF9iW8o9DmtYemwXqmtqnsz3Uj3miDUAcVcp12lhUcz3KQCUQyiT2wAA5LKiKaHZc9xfQDe3mJo9x9SKpvzjIscd+y8/J4ntmdONTsns1LyZ7437coJkY8CcJHjDckNebF1T82a+N34CsQYA8E6Uvk8BgOQ2ACAyWttMNa1KvnZzAZ15gd60qnJ6IFux//JzmtieXG9owfyqggnugwfVaTn4x03P5XLfkJda19QyKZkP+SLWAACliNL3KQBIJLcBABFSV+v+AtruAr1Sf57K/svtlw92TmxfPNk+sZ1il+D+9NnZD5mUpF69RLLRZ61t7ofksLshD+IPN17VdcTw7Id6SclpYg0AUKwofZ8CQArJbQBApLjpIcIYtJ2x/+xdcF6VRtYlX6ceCFlXa6ixIflerm3PTHCPrJP27zeyemxL0r59oheTz5wcKzuZ50NjQzDjsnpV15dezu6xLSWniTUAQLGi9H0KACmGGfBjM8eNG+dZWYZh6KijjtIxxxyjY489Vp/85Cc1atQonXHGGZ6tA97ZvXt3uauQUxSeJgukEK9JhRKvlZSYLUaQ+y9KMfvLBxO64Lzsv/23thV+4OAvH0xo//7snt69eiUT2ynEoP+cHCsnywURs6XU9aWXlRVrNTUMTVLJotTGAhIxGwVefZ/GAfGKqIlCzPbt29fT8rp6WpoD27Ztk2EYnu5cw0g2no899pgk6bjjjtPFF1+sb3/72+nP4uLtt9/WSy+9pLfeekv79u1TdXW1jj32WJ144okaNmyYunfvXlS5b775pjZt2qTt27crkUho4MCBGjp0qE455RSPtwDwll0iys/lEB6pxE0qwZP6f3K9QWLbgRHDk/vF7f7z4qYlzDdMdu2Ck3VaE9upfZa5LzP3MfxRbHyU40a82HVaE9vEGgDAa1H6PgWAwHtuDxs2LCu5XWzy2TRN22Uzyx09erR+9rOfacCAAcVXOAQSiYTWrFmje+65R6+88krO+bp166ZRo0Zp+vTp+tznPueo7KefflpLlizRhg0bbD8/9dRTNW3aNE2YMKGoumei5za8dtnlCW1s7RhCwKnUQ+NG1km33xa9BDfxms2aiKUHY2ErmhJqWtXxQDqn+y+1rxsbpKmNzs+dzJhdsHCXVt5tuj4uxa47CPyKIH7C2s4Sa7AT1ngFciFmESXEK6ImCjHrdc/twO8OhwwZosGDB2vIkCHq2bNn+n3TNNP/evbsqQEDBqhPnz7q0qVL1mcpAwcO1ODBg9WvXz917do16/NU8nz9+vWaMWOGDhw4EPRmeuavf/2rLrzwQn33u9/Nm9iWpMOHD2vdunVau3ZtwXJN09RPfvITTZ8+PWdiW5K2bNmiK6+8UldccYUOHTrkuv6AX375YDKxLSUf4jbvqoSj5VKJbUna2JosB9FmHUOaxHZ+rW2mmlYlX6eSYE72X2bSrGmVinpQ0IvrD2vl3R09S52ODezFuv3iJJnoZpxzIBdiDQAAAOgs8GFJnnzySUnSAw88oB//+McyTVM9evTQ17/+dX31q1/V8OHD1bt37/T8pmnqtdde0/PPP68HHnhA//M//yPDMHT88cdr4cKF6V7Zf/nLX/TCCy/o/vvvV1tbWzrBvXnzZt1yyy265pprgt7Ukv35z39WY2Oj3nnnnfR7hmGotrZWw4YNU//+/XXw4MH0UCV/+ctfHJe9YMEC3XPPPVnvjR49WiNGjFCXLl20ZcsWPfvss+k/GDzyyCPq0qWLbr75Zm82DijRBedV6dnnOhLVqQR3vh7cmYltKdnjm6FJ4mFyvaGW+82sxGxNDT/Jt1NXa2jm9OzhXGZONzr12M7cf3ZJtWJ+djpmdDfNmmFoyTLnQyd4tW4/uOklm28YHaAQYg0AAACwF/iwJJK0ePFi3X777ZKk2tpa3XLLLTr++OMdLXvffffpxhtv1JEjR/SRj3xEv/rVr9S/f/9O89xwww1KJBIyTVPV1dV64okndOyxx3q+LX7ZtWuXzjvvPG3fvj393he/+EV9//vf10c/+lHbZbZu3apf/epX6tu3r2bMmJGz7KeeekozZ85MT9fU1GjRokU6++yzs+bbtGmTZs2alVWH66+/XpMmTSpqmxiWBH6wS1jbJbidzhcFxGtn1sRPCj23c8u1zzLZDVtSzD61xuy99yUclRnmIRZa20zNnuO+btZtWrwoPMl6dAhTO0usoZAwxSvgBDGLKCFeETVRiNnID0vy3HPPafHixTJNU6eeeqqampocJ7Yl6aKLLtINN9wg0zS1c+dOzZs3z3aeK6+8Mn0ADx06lH7YZFT85Cc/yUoqz5w5U4sXL86Z2JakU045Rd/73vfyJrZN09Stt96anjYMQ3fccUenxLYknX766br77rtVXV2dfu/222+P9DAviJ8F86s09qyOabshSuKU2EZndmNup/CT/NyswxekWPefH8llJ0MnhDmxLSV7wDc2JF+7qVvmtjc28OAlFEasAQAAALkFnt254447lEgkZBiGrrvuOvXq1ct1GRMmTNBnPvMZmaaptWvX2o4x3dDQoI9//OPp6XXr1nWaJ6yeffZZ/frXv05Pjxs3TnPnzvWk7Mcff1xbt25NT0+cOFFnnnlmzvlPPPFETZ06NT39zjvv6IEHHvCkLoBX8iW4w57YLnbs4BfXH/a4Jv4odvucLmeXAH10TRVjzpagfpJ90tvr5HK+BHfYE9spUxurtHiR+7pNrje0eJERugdjIpxa28yiYq21zSTWAAAAEHuBXun+9a9/1Z/+9CcZhqGPfvSjGjVqVNFlTZgwIf36oYce6vS5YRhZ82zZsqXodQVt+fLl6dfdunXT97//fc/K/u1vf5s1fdFFFxVcZtKkSerSpUvOMoAwsEtwf+7vw53YXtGU0Ow57hOvzS0JXdy4V4uX7POpZt4ofvuSP8Ff0ZT/YZ/5EqA8VK2wXMOSLF1uquX+YPaV3XEaP8HZkCVhUWxvWHrRwonMdtRNzGS2o8QaAAAA4izQLM/mzZvTQ4V84hOfKKmsU045Jf36lVdesZ0nlTw3TVN79uwpaX1B+ctf/qLnn38+PX3OOee4GrYlnw8//FB/+MMf0tODBw9WbW1tweUGDhyokSNHpqc3bNigXbt2eVInwEvWBHfm0FJhS2y3tplqWpV87Sbx2txiph/Gd8fS/UX3jPZbKduXSmw2rcrdg9tJz14S3LnZ7b/MfZX5YMkUv/af9ThlrjvsiW3AT363owAAAEAcBJrp2bFjR/p1McORZOrRo4ekZOI6s9xMmQ+QfO+990paX1AeffTRrMHev/a1r3lW9tatW7U3I2vgpud85rxHjhzR+vXrPasX4KUF86tkWHJhhhGuxLaU7LXpNvFqTUjOvbxXaHvkebF9M6fbP/zMzZAVJLg7y7X/JtcbWeNtS8nxt4PYf7nWTWIblczPdhQAAACIi0CzPZkPIty5c2dJZb3zzjvp1wcPHrSdp3v37unXmcNqhNnGjRuzps844wzPyn711Vezpk877TTHy55++ulZ06+99pondQK8Nu+qhKwPAzbNzg+ZDAM3iVe7xPa0KT19r2MpStm+XAnr1jb3YzHb1aNSezLm23/NLWanHtupab/3X651V/ofIgA/2lEAAAAgTgJNbqd6Upumqba2Nu3bV/x4sc8++2z6df/+/W3nyeylfNRRRxW9riC9/PLL6dcDBw7URz7yEUnSG2+8oYULF+qCCy7Qpz/9aY0aNUpf+MIXNHXqVK1cuVLvvvtuwbKtCekhQ4Y4rtfgwYPzlgWEgfXhkZk9uDMfMhkmThIX1oTFrBlG6BPbKcVsX76ETF2tocaGwvPlq0djQ+WOd5xr/1mPQWYv6tT7fu2/QusmwY1K53U7CgAAAMRJoMnt1DjZhmHo0KFDWrlyZVHltLe36/7775dhGDIMI2v87Uyvv/56en2DBg0qrtIBeu+997J6tB9//PH68MMPdfvtt2v8+PFaunSpXn75Zb377rvat2+ftm3bpj/+8Y/66U9/qi9+8YtavHhx1pAmVtbhW9zsE+u827dvd7wsEARrYnvsWdL/91Tnh0xGLcFtn7DoaLqL7UEbZM9l99uXPyEztbFKixe5T9xMrje0eJGhqY3hGqImaNb9Z3cMHl1T1emYSfJ8/zldNwluVDqv21EAAAAgLroGubLTTz9dQ4YM0dtvvy3TNLV06VINGzZMX/ziFx2XceDAAX3nO99Re3u7pGTi+ktf+pLtvK2trenXH//4x0upeiBS25Ry7LHH6uqrr9bq1asLLrtv3z4tWrRI//M//6OFCxeqa9fOh9baU95Nb3brvMX0ujesAyGHSGbdwlxP2Jt31ZGsxPanxkoL5ieHIrr15i6ad9URPb82+dnaddK/fjeR/jwsvn2RIcNIpB8WuXS5qZb7s4dqmDUjmdhOxejiJft0x9JE+n2nmluS65lyiQJL9LrZPidG1hV3nha7XNyk9kNzS6LTrwJSx8DumM2aYRS1D+3aWLfrNgy5inOgFGG8LvC6HUV8hDFegXyIWUQJ8YqoqcSYDTS5LUnTp0/XD3/4QxmGoQ8//FCXX365Jk2apOnTp2vgwIE5lzNNU7///e9100036c0330wfoOOOO872oYuJREKPPfZYer7a2lp/NshD1odePvPMM+n3evTooUsuuUTjx4/XCSecoMOHD2vLli36xS9+oTVr1qR7bP/3f/+3br31Vl111VWdyrcmpDPHJC+kuro6b1lO9OnTx/Uy5dC7d+9yVwEuzLh0r55feyQ9/dnPdNOyO7KfTLdieXK+Pz5zWJL0/Frpu1dXdZqv3C67VOrRY78W3pY8vzITFtYxtl9cf1h3LN0vSVqyzFSPHtWOhiq5a+V+LVmWLH/l3ab+7pyjNGZ0Nw+3Ijc32wf/ZcaCZH8MrMfMTazl0rt377KtGyhGmK4LaEdRSJjiFXCCmEWUEK+ImkqJWcPMN46FD0zT1Le//W396U9/kmEYMk1ThmGoqqpKI0eO1PDhwzVkyBAdddRROnz4sPbu3autW7fqhRde0DvvvJOe3zRNde3aVcuWLdNnPvOZTuv5zW9+o7lz5yY30jC0evXqnMOXhMWf/vQnXXTRRZ3e79Onj+6+++6cD4Bcs2aNvvvd7yqRSA63YBiGHnroIQ0bNixrvoaGBj3//PPp6ccff1zHH3+8o7olEoms9R9//PF6/PHHHS0L+CUzYS3ZJ7ZLmb9cPv35Xdqzp6Np7t3b0LN/6NdpvrtWdiQ4pMKJDbfz+8Xp9sE/5YydqMYtECa0owAAAEBS4D23DcPQ0qVLdckll+jll19OJ6qPHDmi9evXa/369bbLpXLwqfmrqqp044032ia2JemFF17QmWeeKUnq27dv6BPbUu6e1D/60Y9yJrYlacKECXr55Ze1atUqScl9tXLlSs2fPz9rPmvv60OHDjmum3XeHj16OF42xTrsSpgYhpH+i9aePXvyjl2OcPjlgwn98ZmO4/SpsdJPb0jkjbOf3iDNu0rpIUr++MxhrWjapQvOC89PuJtbElkJC0nas8fU7XfsSv/UPBWv06b01IEDB7RkWfIPWwtv26cDB/bb/iQ9NRRJyqwZhr55/kG1tx/0cWs6c7J98Fdrm6mFt3WMPe8kFr55vnTggJGOoYW37dPQTxxw/GDJVMy+uP5wVqI6iHUDxQjzdQHtKKzCHK+AHWIWUUK8ImqiELNej+wQeHJbko4++mjdd999WrBggZqbm9O9sVMyd3zq/VRS2zRNnXDCCbrxxhs1evTonOv4wQ9+4N8G+MRuDOyTTz5ZX/7ylwsuO336dLW0tOjw4WSv1N///vdKJBKqquq4yenVq1fWMm6S2wcPZicerGU5EcYTyk4qzhBu53/D0JNPmdrYmnx45C0/rXJ03G75aVX64ZMj65LlhOV4Wx8KVlPT8ZPzJctMmWai00PCJtcbMk0jvZzdfHYPG7vowuC3u5jtg/dqR0iNDVLTKnexkJwvOc5vY0OyHLcxNGZ0N025xNDKu83A1w0UK0zXBbSjKCRM8Qo4QcwiSohXRE2lxGxZkttSshfx1VdfrW9961tqbm7Wo48+qj179nSaL3UQqqqqVFtbq0mTJulrX/uaq/Gio8Iuuf33f//3jpY99thjVVtbqxdffFFS8q8z//u//5vVY92akP7ggw8c1806bzHJbcBrt99WpV8+mHDd83rB/OKW85NdAnpyvZH1fur/b1/UOcGd+Xnqf+vymeUGzc32kZjx39TGKp0xxnTd+3lyvaERw1VSr+mpjVUaMzpRlnUDUUY7CgAAAHRWtuR2ysknn6zrrrtO1113nV577TX9z//8j3bv3q333ntP3bt3V01NjY477jiNGDFCRx99dLmr66v+/furW7du6d7XkjR06FDHy59yyinp5LYk7dixIyu5bX1g5/bt2x2X/fbbb2dNDxo0yPGygJ+KTVCHObE98dxkYqK1zbRNXBtGQpddml3G5HpDb79tavXDSs/Xcr+Z9bCxVLlutba5T4Jmypdgz5eYh78KHdNcx73Y5dyU4fVyUebm/Muct9jlYK/YfeTVvqUdRSUo93kGAACiKTzZHUknnXSSxo8fr4suukgzZ87UlClT9M1vflNnn3127BPbktStWzd97GMfy3rPzZNNrfNae8KffPLJWdNvvfWW47KtifCTTjrJ8bIAcrMmLMaMllY/LF1+RUKz55hqbkkmuGdO77hpW7LM1F0r93cqZ/XD0nFDOt7LTGynym1ucfeTpOYWU7PnmFrRlCg8c47lC/Uct27f0uWm63rCWyuaOuLPjVLjBdncHIfMed0cB45ZYeU+H2hHUQnKfZ4BAIDoClVyG9InPvGJrOlSHvpofYCkNbm9adMmx2W/8sorWdMkt4HS2fXYfvH/nqmb+j+VoLAmLhbeti+d4M4sZ5vN36yO6tW5PLf1a1qV7BnlhpshUUjMhEdrm6mm5POJA40XZHNzHKzzOj0OHLPCXlx/WCvv7ugRHfT5QDuKSsD3DgAAKAXJ7ZA566yzsqZ37NjheFlr7+q+fftmTQ8dOlQ1NTXp6Y0bNzoue8OGDenXXbp0yfswTwCFtbZ1TlhcOa8qKzGRki/BffOCI1nl2PlgX/Khm9by8rFLqLj5ya/d9hX6ibxdYoYb1eDV1bpPkJUaL+jMzXGwzpuS7zhwzJwZM7qbZs0oz/lAO4pKwfcOAAAoBcntkPniF78ow+i4MFu/fr2j5UzTzEpWd+nSRcOGDcuap2vXrvr85z+fnn777bfV2tpasOwdO3ZkzTdq1Cj169fPUb0A2KurNdTYkHxtHTu1UII7lWj51NiuemhN7nVk/C1La9c5T3B78RDKXNtXSOb2NzZU5hjLYeCmB2hYHloaR371xOWYuTO5vqos5wPtKCoJ3zsAAKBYZX+gJLINGjRIo0ePTj8Y8sknn9SuXbsKJpP/+Mc/Zo2hXVtbaztO+Ve/+lX9+te/Tk+3tLSorq4ub9n333+/jhw5kp7+yle+4mhbAOQ3tbFKZ4zp/BAk68PBUlLT376oSu++21W/+K+DOctO3ehl3gCmEtxr12WXl3lD6OUNY67tK2RyvaERw0nIlJuTh9SRYPBfMcchhWPmnXKdD7SjqCR87wAAgGIYpml69lvFhx56qNN73/jGNwrO4wXreqLsueee0yWXXJKeHj9+vBYuXJhz/g8++EAXXHCBXn/99fR7t956q772ta91mtc0TU2YMEFbt26VJBmGoXvvvVdnnnmmbdmvv/66Jk6cqIMHk0m0AQMG6PHHH1ePHj1cb9fu3btdLxMUwzDUp08fSVJ7e7ucnBY80R1+y5Ww+tRY6fm1uZez3uhZy8lMcGfOf/OChFY/nLucXIjpeMuVSHCTYCimjUU2N8dBUsnHrNLlilkvzgfAa3FrYznP4i9uMYt4I14RNVGIWeswyqXyNLk9bNiwrCE1JGnz5s0F5/GCdT1RN2PGDP3+979PT3/jG9/QNddco2OOOSZrvjfffFP/+q//mjVsyIgRI/SLX/xCVVX2o8489dRTmjlzZnq6pqZGixYt0tlnn50136ZNmzRr1qyssbyvv/56TZo0qahtilNye0VTQk2r3F9Upy7KGxuSvbGAQnIluHPJFZOFEtzV1dLBjI7gTmObmK4M1vipqZH27u34vFC8ROECKwrcHIdSj1mlyxez7FuETRzbWM6zeItjzCK+iFdETRRiNjLJbdM0ZRhGzuS2F6tNlWO3nqjbs2ePvvWtb2X1xj7mmGP0uc99Th/72Md0+PBhbd26Vc8//7wOHz6cnqdfv3765S9/qSFDhuQt/5ZbbtGdd96Z9d7o0aNVW1urqqoqbdmyRc8++2zWcZowYYJuvvnmorcpLsnt1jZTs+e47zVivUhfvIgH38AZpwnuQrFYKMGd+f6C+YUT1cR0ZckVh07awChcYEWFm+NQyjGrdIViln2LMIlrG8t5Fl9xjVnEE/GKqIlCzIY+uZ1VeI7kttfimNyWpL/+9a+aM2eOXnnlFUfzn3TSSVq2bJk+9rGPFZw3kUjohhtu0L333uuo7PHjx+umm25SdXW1o/ntxCW5Lbkf74+fUaJU4ycksnosWRX7R5ZevaR9+9yXR0xXJmsc1tRIj64p/IeQKFxgRYmb41DsMat0TmKWfYuwiHMby3kWT3GOWcQP8YqoiULMep3c9vSBkjfeeKMn8yDpox/9qP7zP/9TK1eu1H/+539q27ZttvN95CMfUUNDgyZPnux4LOyqqipdc801+tznPqc77rhDGzdutJ3vlFNO0bRp0zRx4sRiNyOWnDzwJoUkIErV3GLmTWyPPcs+9uxkxu6Y0dKL6+3nI6ZhZReHe/cm3+f4B8fNceCY+Yd9C/iP8wwAADjhac9t+Mc0Tb300kt6/fXX9c4778gwDPXr10+nnXaaJ73h33jjDb3yyivauXOnjhw5ooEDB2ro0KE69dRTPah9Upx6bqcUSvKRBESpvBqSxOrmWxNavaZj2jqWZa5yienKxJjb4cCY28FhzG1ESRzbWM6zeItjzCK+iFdETRRiNtQ9t+EfwzBUW1ur2tpaX8o/4YQTdMIJJ/hSdpzl68FNEhDFam0zVVfbOYZSPjVWen5t9ntLl5t6+21TV87L/qluqqxMzS1mVmI7FZt26yOmkeu4Z76fr6d/OdjFvZ/L+SlXe5DvOFhf55rXrs1Afl6dD3GKUQSrEmInit87AACgfLijAUo0ud7QzOkdF9ZLl5saPyFBEhBFWdGU0Ow5puZdlbBNbM+cbmjB/C6ae3mvTp+tfli6/IpEp7KaW3L3OMyMTWsspxDTlctNvCxdnh1r5WIX9040tyQfFryiKVF45oDkag8yj8PBg53/IOX0mFnbDOTn1fkQpxhFsCohdqL4vQMAAMqL5DbgAevFNj+bRDFa20w1rUq+Xruu8+eZsTRtSk/bBPeL66WbFySyykrd/JXS85qYrjxO4iVsiQa7uHcic1ubViXLKbdc7UHmccicJ5cRw7OnJ9cbGntWx3SqzUB+Xp0PcYpRBKsSYieK3zsAAKD8SG4DHplcb6imJvu9mhp+Lgnn6mqzk06Z7G7wpk3pqU+N7Tzv6oell15Wp5u/QjeMTsb3JqYrg5s/hIQp0VBX674udtsahp/u27UH1ofHWrfXauxZsh2WyPrHs9UPi+RQHs0tzn+5Uuh8iFOMIlhxj52ofu8AAIDyI7kNeCTfE90BJ1rbOiedpM4JrZS7Vu7vNPZ2ytLlpkYMl23iy0lie+Z0+0Q7MR1/rW3ue/jbJRrK1TvQTdIjzOPI27UHa9d1Pv8m1xuaOMG+jLXrsntpWrc38xwv5zELsxfXH9aSZd6eD3GJUQQvrrET9e8dAABQXiS3AQ/YPdE9hd4kcKqu1lBjQ/L1cUM63rdLaN21cr8W3rYvPZ1KUo0Znfy/sSFZXq5xtDPZ3QCn1pvSvXvHa2I63jLj0E0yJDPWUvFXLk4SQGFP/GQeB2sS2rotgwfZ1zvzONht74L5VaE5ZmE1ZnQ3TbkkuV+8PB/iEKMoD/vYyR5aKGqxE4fvHQAAUD6GaZqeZSjGjRvnVVGuGIahxx9/vCzrhnO7d+8udxVyMgxDffr0kSS1t7fLzWnh5Inume8DhbS2maqrNXTzrQmtXtPxfiqG7vu5aduTMLVc6v9MbuJUUtZ7EydIV15RRUxXGLs4Kna5UtrYUsShfU7tT6fbksnp9hZ7rOPMGrMbWxOenQ+Z4hCjKA9rjMy9vJemTemp2+/Y5frXBmHh5fcOwq1c1wVAMYhXRE0UYrZv376eludpcnvYsGEyDCPwHWcYhjZv3hzoOuFeHJPbhW4+uTlFqex+FZA5/M2sGYYuutBZTBUqyy6xTUzDC+W8wHIS91GJ4WLO4ShvbzkFGbNxilEEyxo7vXsb2rOH72iEXxQSL0AK8YqoiULMep3c7uppaf/HMIK7iArjQUJlcPpEd6kj0ZD6nxsNOGWNocyEx9zLe+mb5x903A7mK8tJYtuuDGIaYVco7qMUu262JQ7bWyniFKMIljV2SGwDAIBK5GnP7S984QteFeXak08+WbZ1w5k49dx223uV3q4o1fgJiayER+/ehp79Q7+i/hJrLaumRqqfZBDT8E0Yeg/Yxf2ja6L56BEn2xKn7S2HcsQsxwzFInYQNWG4LgCcIl4RNVGI2VD33CbBjEpQ7BPdpezeriOG8+AbONPcYmbdtErJ3ll3rdyvb55fell79xbusW1FTCNKcsV9c4sZuT/KONmWOG1vpeCYoVjEDgAAqHT8SR9wiSe6I0h2Y7GmLLxtn5pbEp6UlUJMI27yxf3S5aaaW8LXkyEXJ9sSp+2tFBwzFMtuzO0UYgcAAFQKkttAEaY2VmnxIvfDMEyuN7R4kaGpjZx6YdLaVtzNX7HLOV3ebuiPR9dU6RsTOuZZsszZzWuuslLJ6WKNGK6iYrrUfQc44STuo5IAcrotcdneShGnGEWwrLEz9/JeevYP/TRrBrEDAAAqCxk2oEjF9lKld2u4rGhKaPYc9zd/zS2mZs8xtaLJec9pN+vNNaZ1c4uph9ZInxrbMapUoZvXfONjZ/a+dlKW3Ta89LKj2bPqU8q+A5zwK+7Lwc22OJkn7NtbKeIUowiWNXZmzTA0bUpPSdLkev44AgAAKgvJbQAVq7XNVNOq5Gs3N3+ZN5VNq9z3Qi603nyJ7dT7z6/9UP/0zer0PLnq7+TBj8UkUcq17wAn/Ir7cvDq4a1R2d5KEacYRbDsYyf7lo7YAQAAlYTkNoCKVVfr/ubP7qbSbW/8fOt1ktiWkj8/vu7ao/P+/NhNUsztjXC59h1QiJ9xHzQn22KdJ8VuW8K+vZUiTjGKYBE7AAAAnZHcBlDR3Nz8edWDMtd6b16QcJTYLvTz49a25D+3dbWrU76e1eXad0AuQcR9UJxsi908hbYlrNtbKeIUowgWsQMAAGCva+FZnHvooYe8LM6Vb3zjG2VbN4BoS90cpm4aU/9n3jT6kZy1rnf1w9KY0dKL63MntnP9/DhVTmNDx7jujQ3JoUPc1DVXWU63Iah9B9ipqzUCifsgONmWfPPk25Ywbm+liFOMIljEDgAAgD3DNE3P/nw/bNgwGUZ5Lpg2b95clvXCud27d5e7CjkZhqE+ffpIktrb2+XhaYEIcTokiNfJWWv5E8+VrpxXlXO9ueK1tc3sdNNq954Tbpcr175DNATdxgYV90FwUqdiz/0wbm9Y+B2zcYpRBMsuBpzEK7GDMOHeC1FCvCJqohCzffv29bQ8X5LbQe241LoMwyC5HQEktxEF1mRsTY20d2/H534lZ92sN6zxWq59h/ALa8wCuRCziBLiFVFDzCJKiFdETRRi1uvktudjbge508J4gABEm3V8yqCSs+Var5fisA0AAAAAACA6PB1z+8Ybb/SyOAAoi8n1hlruN7OSszU18j05W671eikO2wAAAAAAAKLB0+T2eeed52VxAFAWzS3ZyVkp2Qu5ucX0NUlbrvV6KQ7bAAAAAAAAosHzYUkAIMrsxo1OWbrcVHOLP8MhlWu9XorDNgAAAAAAgOgguQ0A/8eanJ053dCja6qyxpH2I0lbrvV6KQ7bAAAAAAAAooXkNhBirW3FJQKLXa6S2SVnU8NoWB+U6GWStlzrlbyLr3JuQ9xwzgP5cY7AC8QRAABAfJDcBkJqRVNCs+e4TwQ2t5iaPcfUiqaETzWLn3zJ2RQ/krTFr7f0Y+tVfJVr38UR5zyQH+cIvEAcAQAAxIunD5QsxeHDh9XW1qa//OUvam9v1wcffCDTNHXZZZeVu2pA4FrbTDWtSr5OJQ6dPIwvM9HYtEo6Y4ypuloe4pePk+RsSur91Pxujo2X612yzFSPHvs1bUpP1+uVvIuvXbsSWv1wx+dB7bs44pwH8uMcgReIIwAAgPgpe3L7T3/6k1auXKlnnnlGhw4d6vS5XXL7D3/4g37zm99Ikvr06aPvfve7vtcTCFJdraGZ090lAu2Spdx45dfa5jzBnGKXpB0xXK72tRfrXXjbPo0a2VUnn+R4tWlexNfECdLqNR2fB7Xv4opzHsiPcwReII4AAADip2zJ7X379unaa6/Vo48+Kkkyzc4/DTQM+wvHoUOHatasWUokkj8LnDhxooYNG+ZfZYEycNPT1U0vYHSoqzXU2JDsxeVmn2Uem8YG98lZL9Z76cyeGjO6m9rbXa3atqzM/93EV7++icD3XZxxzgP5cY7AC8QRAABAvJQluf3++++rvr5ef/7zn2WaZqcktmEYtsnulMGDB+vzn/+8nnrqKRmGoUceeYTkNmLJyQ0YN16lmdpYVdTPiyfXGyX1Oi5lvbUjDJ3z+V5FrddallR8fJVr38UZ5zyQH+cIvEAcAQAAxEdZHig5Z84cbd26NT3drVs3TZw4UTfccINuuummvIntlH/4h39Iv37mmWd8qScQBvkexseNlzeKTbKWmpwt13ozlRpfYdiGuOGcB/LjHIEXiCMAAIB4MEwnmWQP/fa3v9W//Mu/pHtr19XV6Wc/+5kGDRokSdq2bZvGjRuXrJxhaPPmzbblvPPOO/rc5z4nSerSpYvWrVuno446KoAtQLF2795d7irkZBiG+vTpI0lqb2939AeWoFlvtGpqpL17Oz7nxqty+BGvxFf4xOmYRKGNRfT4eY4Qs5UjDm0t8YqoIWYRJcQroiYKMdu3b19Pywu85/ayZcvSr4cOHaqmpqZ0YtuNAQMGqH///pKkRCKhV1991bM6AmFk7WEUtRsvhBvxFT4cEyA/zhF4gTgCAACItkCT2zt37szqiX3ttdeqZ8+eRZd30kknpV+/8cYbJdUNiILJ9YZqarLfq6mxfwgS4BbxFT4cEyA/zhF4gTgCAACIrkCT2xs3bpSU7CI/ePBgnXnmmSWV17t37/Tr9vb2ksoCoqC5xczqUSQlexilxogESkF8hQ/HBMiPcwReII4AAACiK9Dk9jvvvJN+feqpp5ZcXq9evdKv9+3bV3J5QJjZjQmZkvkQJKAYxFf4cEyA/DhH4AXiCAAAINoCTW6///776ddHH310yeVlJrSrq6tLLg8IK+uN18zphh5dU5U1RmRYb8Ba24qrU7HLwb1i46tSj20Q2x3lcx7eitt55tX2cI7AC8QRAABA9AWa3K7J6Arx3nvvlVzezp07068zhygB4sTuxis1BqT1IUhhuwFb0ZTQ7Dnu69TcYmr2HFMrmhI+1QwpxcZXpR7bILY7yuc8vBW388yr7eEcgReIIwAAgHjoGuTK+vXrl379v//7vyWVdejQoayHUw4aNKik8oAwynfjlZKaTs2X+r/cD0FqbTPVtCr52k2dMre5aZV0xhhTdbU80MkPxcbX29tNrV6jrPcr4dgGEdNRPufhrbi1oV5tz67diXT7I3GOoDi0tQAAAPERaM/t008/XZJkmqa2bdumV199teiyHnvsMR0+fFiS1KVLF9XV1XlSRyAsnNx4pYSxh1Fdrfs62W1zGJIycVRKfK1eI409q+PzSjm2fsd01M95eCtubagX2zP2LBVMbKdwjiAX2loAAIB4CTS5ffzxx+uEE05ITy9fvryocg4dOqSlS5dKkgzD0IgRI7IeLglEXWub8xuvFLsbsHKPuermptDNzSZK40V8rV0nTTy34/NKObZ+xXRcznl4K25taCnbM/HcZLuTwjmCYtDWAgAAxE+gyW1JOv/88yUle2+vWbNGDz74oKvlE4mErrnmmqxe3xdddJGndQTKra7WUGND8rWbBEXmDVhjg0LRY89JMiMKSZk48Sq+rpxX+KFbcTy2fsR0nM55eCtubWix23PlvCrOEZSMthYAACB+DNM0A+16sH//fn3xi1/Url27ZJqmqqqqNG3aNM2aNUs9e/bUtm3bNG7cuGTlDCNrXO3//d//1Y9//GOtXbs2/d7HPvYx/fa3v5VhcJEZdrt37y53FXIyDEN9+vSRJLW3tyvg0yKn1rbixkotdjk/pOqSK/mS6/0wbUPYeBWvXsWX22MbF35s9y8fTOiC89z/3bnY5YIS1jY2SuJ2nhW7PUF9LxKz8RaH66tM5YrXuO1HBIc2FlFCvCJqohCzffv29bS8wJPbkvT//X//n2bOnKlEIiHTNGUYhnr16qVzzjlHgwcP1ooVK5KVMwwtWLBAr7/+up555hlt3LhRpmmmD0x1dbVaWlr0yU9+MuhNQBFIbleeFU0JNa3KnbSoqZH27u2Y3zpfY4M0tTG8CbtyCWO8Oj22cePldlvPF7d1CPP5EsaYjaK4nWdh3h5iFlFSjniN83cW/EcbiyghXhE1UYhZr5PbXT0tzaHPfe5zuu6663T99dcrkUhIkj744AP95je/yZrPNE3NmzcvazrVQ7tr1676yU9+QmIbCKnWNlNNq5KvU8mL1M1PajpfYluSmlZJZ4yhd08UODm2ceTVduc7X/LhfKkscTvP4rY9QKXgOwsAAIRJ2f5c/k//9E+666671L9//6yktZT8K0PqX+ZfGFLTffv21V133aWvf/3r5ag6AAfqau3HVZ1cb6imJnvemhrl/Dk6Nz3Rke/YxpkX253rfMmH86Uyxe08i9v2AJWA7ywAABAmZf0t2Nlnn63//u//1pVXXqnBgwenhxzJ/Ccp/bpPnz6aPXu2fve73+lTn/pUOasOwAG7B4fNuyqR1TtPSvbWm3dVIpLjxqJDc4tpe2wL3fBGnVfb7eRBe5nr5HypTHE7z+K2PUCl4DsLAACERVmGJcnUq1cvTZ06VVOnTtXrr7+uF198Udu3b1d7e7sOHTqkvn376thjj9WoUaP0yU9+kgdHAhFj/dn52nUdn2WOr5r5Pjc90ZNv7Fw3P1mOGq+323q+2JVBkqByxe08i9v2AJWG7ywAABAGZU9uZzrxxBN14oknlrsaADw2ud7Qho1mVgJ77FnSgvlVmndVotP73PRES64b18z345io8mu78yULSBJUrridZ3HbHqBS8Z0FAADKzTDD+NhMxNLu3bvLXYWcovA02Siz3tykZPbSy8TNT35hitdCN65xvbENYrvz9WottsxyCVPMRlHczrMobA8xiygJQ7zG6TsL/gtDzAJOEa+ImijEbN++fT0tL/Axt9966630v0QiUXQ5R44cySoLQDhZb3bGntXxWeZNT+b7Th5MhPJzkoByMyZnVAS13dYySBJUpridZ3HbHgBJfGcBAIByCTy5/YUvfEHjxo3TF7/4RW3fvr3ocrZv365x48alywIQPnZJjAXzq1RTkz1fTU1yiBKSGdHhpmdlnBJVQW/35HrD9nwhSVAZ4naexW17AGTjOwsAAJRD4MltSTJN05Nu8alywtjFHqh0rW25x1O1DkWyd28y6WGXzGht4/wOm1zHNp84HNtybHe+8wXxFrfzLG7bA6AzvrMAAEA5lCW5bRj89R6Iu7paQ40Nydd2DwqTlNW7J9UrLzOZ0diQLAfhYndsnYj6sQ16u52cL4ivuJ1ncdseANn4zgIAAOUS+AMlhw0bllyxYeiJJ57QkCFDiipn27ZtGjduXLqszZs3e1ZH+IMHSlam1jZTdbWdE9u5Et6p91PLobOwxGuxxyjqxzaI7XZ7voRdWGI2iuJ2nkVle4hZREm54zVu31nwX7ljFnCDeEXURCFmI/9ASa8cOnQo/bq6urqMNQGQT77EtpR7XNUwJmWQrdhjFPVj6/d2F3O+wDvFDnvh13AZcTvP4rY9QKXjOwsAAJRbZJPbf/3rX9Ovjz766DLWBEA+TnrtcPMDJHG+lNeKpoRmz3G/P5tbTM2eY2pFU8KnmgFA+PCdBQAAwiCyye3Vq1dLSna3P/7448tcGwB23PwclZsfVDrOl/JqbTPVtCr52s3+zDxuTav868ENAGHCdxYAAAiLrn4U+tBDDzma77HHHnM1zsqhQ4e0c+dOPfPMM9q4cWP6/draWpc1BOC31jb34yymPk8tt3S5qRHD+Tk64o/zpfzqag3NnJ69PyXlPQ52yR32P4C44zsLAACEiS/J7e9973syjPwXKqZpav78+UWvI3NA9K9//etFlwPAH3W1hhobkj0h3TxAKPPmp7GBmx5UBs6XcLBLvmS+n4kHpQGoVHxnAQCAMPEluZ1S6ImcxTyx05o0nzRpkkaMGOG6HAD+m9pYpTPGuH845OR6g948qDicL+HgJMFNYhtApeM7CwAAhIVvY24Xk7h2Wq5pmjr++ON17bXX6rrrrvNlPQC8UezNCzc94VXsmMJ+j0Uc1nq5wfkSDvnGhyWxDVSmOHzHeI3vLAAAEAa+9Ny+8cYbbd83TVNXX321pGQP7CuvvNLxmNuGYah79+465phjdPLJJ2vIkCGe1RcA4MyKpsT//Qw5/1jEVqmEYGODqamN3v9dNaz1QnTZ9eBuud/U3r0d85DYBioD3zEAAADh5Uty+7zzzsv52dVXX50eWuQrX/kKSWoAiIjWtuT4mpKzh+2lZPZ0bVqlon7GHMV6IfqsCW4S20Dl4TsGAAAg3MrShcCvIUsAAP6pq809VEMudkM4eH1zH9Z6IR4m1xuqqcl+r6bGXe9NANHFdwwAAEC4+fpASTtPPPFE+vXAgQODXj0AoAROHraXEuTYxGGtF6KvuSV7KBIp2YO7ucUkboAKwXcMAABAeAWe3D7uuOOCXiUAwENObvLLcXMf1nohuqzxUlPTMTSJm+EJAEQf3zEAAADhxJNNAACuTa7P/TPtYm/uW9uKG7Iqczk/6oXKZBcvj66pcj08AYD44DsGAAAgfAyTAbARkN27d5e7CjkZhqE+ffpIktrb2xkXHqEWpnjN17NVcn5zv6IpoaZV7pMBqfU3NkhTG6s6vV9qveCNMMWsE4WSVCSx4i9qMYtghe07hnhF1BCziBLiFVEThZjt27evp+UFPixJLrt27dKuXbv03nvv6cMPP3S9/JlnnulDrQAA+Vh/pl3MzX1rm6mmVcoqx8lymcmFplXSGWPM9AO7vKgXKpOTxLWb8XcBxA/fMQAAAOFR1uT2iy++qF/84hd6/vnntXPnzqLLMQxDmzZt8rBmAACnJtcbark/+6F7NTXOE311tYZmTneXKLRLQKYS217VC5XHTY9sEtxAZeM7BgAAIBzKMub2+++/ryuuuEKTJ0/WmjVrtGPHDpmmWdI/AEB5NLdk39xLyV5sbsYizjeOqd36nCQgvagXKkdrm/uhRuzittix4wFEC98xAAAA4RB4cvvgwYOaPn26fvOb36ST0oZBDwcAiCK7cUdT3D5sz0mC201i26t6oTLU1RpqbEi+djOsQGbcNjao0y8IAMQP3zEAAADhEfiwJHfddZfWr18vwzBkGIZM01S3bt00atQonXzyyaqpqVG3bt2CrhaACtDaZhaVeCp2ubjLlWjOfN/tUA35hnooNrHtRb1QGaY2VmWN3e7U5HpDI4aT2AYqAd8xAAAA4RJocvvDDz9UU1NTOqktSRdffLFmz56t3r17B1kVABVmRVNCTaukmdPd3WymblYbG0xNbSzLSE6hlC/RXOpYxHbLW8c1dZvY9qJeqAzFJqhJbAPxx3cMAABA+ASaqdm4caPef/99ScmhSGbMmKGrr76axDYAX7W2mWpalXzt5ufCmTexTavEWLr/x0kPajdjaNuxLl9qYturegEAKhPfMQAAAOEUaHL7tddekySZpqmjjjpKs2fPDnL1ACpUXa37m027m1h6Zjof81ryJsGdOY6plBzXtNjEtlf1AgBUFr5jAAAAwivQ5HZ7e7ukZK/turo6de/ePcjVA6hgbm423dzEVpLWNvf7xW6/O+0B39ySPRSJlOzBbT1uQdcLAFA5+I4BAAAIt0CT20cffXT6db9+/YJcNQA4SnCT2M6trtZQY0PytZv9krnfGxucjU1sPQ6ZPbitxy3IegEAKgvfMQAAAOEW6AMlBw0alH793nvvBblqAFBrm5n3gU+5EtutbSY3pf9namOVzhjjfn9Mrjc0Ynhxie3Ucch83/qgriDqFXfFxjnnB4C44zsGAAAgvALtuT1q1Ch17ZrMp//5z38OctUAKtyKpoRmz0n2+LXrwT1+QiJnQnX2HFMrmhLlqHYoFXuTXkpiWyrc897PesVd5vnhBucHgErBdwwAAEA4BZrc7tu3r8455xyZpqm33npLr7zySpCrB1ChWttMNa1Kvk4lRK2J0syxne16CjetEuNl+szJkDA8qMt7dueHE5wfAAAAAIByCzS5LUlXXHGFevbsKUn66U9/qkSC3l4A/FVXa58QnVxvZI3lLCXHds41RAm9r/zjZqxzEtzeynV+5MP5AQAAAAAIg8CT2yeffLKuueYaSdILL7yg733vezp06FDQ1QBQYewSovOuSmT12JaSPbjnXWU/RAn80drm/iGedseTnsPFc/MHAx66CgAAAAAIi8CT25J0wQUXaOHChaqurtbDDz+sc889V7/4xS+0Y8eOclQHQIWwJvDWruv4LLMHd+b7JO78V1drqLEh+drN/s48no0NjGtaKicJbhLbAAAAAIAw6Rr0CseNG5d+bRiGTNPUG2+8oeuuu06S1KtXL/Xu3VuG4fxm2TAMPf74457XFUD8TK43tGGjmZXAHnuWtGB+leZdlej0Pom7YExtrNIZY0zXCerJ9YZGDCex7ZVUvKcS2Kn/cw3Vw/kBAAAAACinwHtub9u2TW+99Za2bdumAwcOyDCMdJLbNE198MEH6c/d/AMAJ5pbshPbUrKn9vgJCdv3Uz1Xix3yInM5L8ooVI4fnwWl2AQ1iW1v2fXgHj+BoXrgXq52pVB7U+xyAILn1bUNAABAscoyLImkTj2zU0lut/8AwClrz9OxZ3V8ljn2dub7S5ebuvyKhGbPcf/QwuYWU7PnmFrRlNCKptLLkKQVTQld+p2E7lq5v9O8+dZhLcfpZ6hM1gR35vlBYhtO5GqPCrWFudoj2ikgfLy6tgEAAChF4MOSDBkyJOhVAkDOIRXGT8h+qGRNTXKIksz5X1yf/CxziAY362ta1fF+KWX06ZNIl7Xwtn2SpG+en5xubTPTn1nXYS0nc/iPfJ+hsk2uN9Ryv9np/CCxjUJytUf52ikpd3tEOwWET6HzORfOZwAA4LXAk9tPPvlk0KsEUOFa2+wT280t2Yk7KdlDtbnF7DT2cIqTGzi7RHrmssWWccF5hvbv73h/4W37dOCAoYsuNFRXa2jm9M7rsL6eOd2wTWxbPwOcnB+AnVztUfIXAc7HdLcmtjPfB1Be+c7zXDifAQCAHwJPbgNA0OpqDTU2JHsYZSa2M2+wamo6hl6w3qAtXW5qzGhnPbgLPXTPyU1gvjIm1xsyDGnJsuTnS5aZMs3k+7keBmhXDg8HRD5uzg/ATr6Hk1rftz7kN1c7TTsFhEuh8zwT5zMAAPALyW0AFWFqY5XtT9wl+0RK5g3aiOHqtFyhn9Rnlpvi5CbQyc3f5Poq9ehRnR6aJLOcXD3OSWzDKbfnB5CL0wQ3iW0gury6tgEAACgWyW1Ikt58801t2rRJ27dvVyKR0MCBAzV06FCdcsop5a4ayqC1rbjxD4tdLij5EttS4Ru0fJ87vXHzogxJmjalpyTZJrjz8fMGM65xU0lKOT/CjNgsn3xxY+2xPfYs920hgPLz6toGAACgGIZpmu4eb41Q+PGPf6x77703673zzjtPN910k6tynn76aS1ZskQbNmyw/fzUU0/VtGnTNGHChKLrmrJ79+6Sy/CLYRjq06ePJKm9vV2VfFqsaEpkDd/hVOrmpbEh2Us6jJzeYBWaL9+QDfnKzbcON2Vkxuvtd+xKD1FiV06mYurpVJzjplJ4dX7YKWcbS2yGQ6E2L9f75UqEcV2AKAlLvHpxfYTKEJaYBZwgXhE1UYjZvn37eloed2sRtHHjRt13330llWGapn7yk59o+vTpORPbkrRlyxZdeeWVuuKKK3To0KGS1onwa21LjkstJXvdNLc4awQzb2aaViXLCRs3CbnkQ8+yx8nO3BfWz4u5cfOijGQ5VXnL8WIdhcQ5biqFl+dHmBCb4ZGvzRt7lmzfJxEGRItX1zYAAABukNyOmMOHD+vaa69VIpEoqZwFCxbonnvuyXpv9OjRamho0JQpU/SZz3xGhtFxAfrII4/o3/7t30paJ8KvrtZ90souKRa2n/G3trnvaWqXwMtMcE2uN1RTk71MTY27IRq8KKNQOV6tI5+4xk2l8OP8CAtiM1xytUcL5lf53k4BCEYQ1x0AAACZPB9z+4UXXvC6SEfOPPPMsqw3aMuXL9fWrVslSQMGDNA777zjuoynnnpKd955Z3q6pqZGixYt0tlnn50136ZNmzRr1ixt375dkrRmzRqNGTNGkyZNKmELEHZuxtWNyjiKdbWGGhtM10MTZO6LxgZlJbiaW8xOP6nfuzf5vtPyvSijUDmp16Wuo5A4xk2l8OP8CBNiMzxytVXzrkoE0k4B8J9X1zYAAABOeT7m9rBhw7J6/AbBMAxt2rQp0HWWw2uvvaaJEyfq0KFD6tmzp37wgx/o+9//fvpzJ2Num6apCRMmpBPkhmHo3nvvzfnHgddff10TJ07UwYMHJSUT6o8//rh69Ojhuv6MuR0tbsedjkISyKuHyjHmdm5xjJtK4edDF8PQxhKb5cWY24B/whKvjLkNp8ISs4ATxCuiJgoxG5kxt03TDPRf3JmmqWuvvTY97vWll16q4447znU5jz/+eDqxLUkTJ07M2+v9xBNP1NSpU9PT77zzjh544AHX60X05BtXN6pJoGJ7luZLbM+cbujRNVWuhj4otYzU8A93rdyfldi2Kyfzsxt/7P9YyXGMm0rhxfkRZsRm+eRq8zLH2paSY2+7bU8BhIMX10cAAADF8C25bRhGIP8qxf33368//elPkqRTTjlFjY2NRZXz29/+Nmv6oosuKrjMpEmT1KVLl5xlIL7skkHjJyQqNgmULwHm9CF7pZaxoimhS7+T0IxL92rhbftsy7GzYaOp2XNMHTxoliXBXclxg/AgNoOXq81rbjG1dl32vGvXdQxdQEIMiA4vro8AAACK5fmY20OGDPG6yIq3Y8cOLViwQFLyjwbXX3+9unXr5rqcDz/8UH/4wx/S04MHD1ZtbW3B5QYOHKiRI0fqxRdflCRt2LBBu3btUr9+/VzXAdFjHa+2Un9e6qRnZ6GxfUsto7UtOS6yJP3xmcO25VjXkZJKIjWtkhYvSi7jZAziYhE3CCtiMzj5EtuZ7489q6ONsrZHfrZTAErnxfURAABAKTxPbj/55JNeF1nx/v3f/13vvfeeJOmf/umfNHr06KLK2bp1q/Zm3MWPGjXK8bKjRo1KJ7ePHDmi9evX64tf/GJR9UD0TK431HJ/9gOCamoq56bEzZAFuW7grK+LKWNyvaGxZ2X3dvzU2PzJ8w0bs+cfe1ZyGIm62uw6+ZXgruS4QXgRm/5zmti2e58ENxANXlwfcT4DAIBS+TYsCbzx3//93/rd734nSerfv7/mzZtXdFmvvvpq1vRpp53meNnTTz89a/q1114ruh6InuYWs9ODv/buVUX8rLS1zf1YvHY/wfWijF8+mOj0M/7n1yaPg109Jdn+7D81ZrfdOlKfeaGS4wbhRmz6K1e7ma89zdUe+d1OASiOV9dHnM8AAKBUJLdD7L333tO///u/p6e/973vqXfv3kWXZ01IuxlCZvDgwXnLQnxZe+XU1HR8VgnjJtbVGmpsSL52M2RB5g1cY4M8KeOC86rS5Xz2Mx1DEy1dbuqll7PXkXo/JfXgtsaG7AcAWtfh1cMBKz1uEF7Epv9ytZuF2tNc7ZFf7RSA4nl1fcT5DAAASuX5sCTwzvz587Vz505J0qc//WlNmDChpPJ27NiRNT1o0CDHy1rn3b59e0l1QTQU8/PxOJraWKUzxpiub8Am1xsaMbzjxs2LMqY2VunMM6RzPl+ju1buTz9Ucuny5IMiFy+SXnrZfgiU1jb79VvXUSriBmFFbAYnV7tZqD3N1R553U4BKJ1X10cAAAClILkdUi+88IIeeOABSVL37t113XXXlVzmvn37sqaPOuoox8ta57WW5YRhhPcCNrNuYa5nkJpbEllJoFkzDE2uT/7Y49sXGTKMhJYs60gGGYbSn8fRyLri4iJzOS/KyJyeNqWnDhw4oCXLEpKSx6GmJvsBeZnHLd/6i62bFXEDO2FoY4nN4OVqVwq1N8Uu56UwxCzgVDnj1atrG1QW2lhECfGKqKnEmCW5HUKHDh3StddeK9NM3mTPnDlTH//4x0su15qQ7t69u+Nlq6ur85blRJ8+fVwvUw6lDP0SF3et3K8lyzqO8dzLe2nalJ5Z81x2qdSjR0fP4SXLTPXoUd1pPvjrskv7Zh2HzMS23XHzE3EDJ8rRxhKbKAXXBYgS4hVRQ8wiSohXRE2lxCxdkkJo8eLFev311yVJJ554ov75n//Zk3IPHjyYNe0muW2d98CBA57UCeGTOdSFlD9BOm1KT829vFd6euFt+3TXyv2+1xHZpk3pqd69s/8i27u3EXhim7hBGBGbAAAAABBf9NwOmS1btmjFihXp6euvv95VEjofa+/rQ4cOOV7WOm+PHj1cr7+9vd31MkExDCP9F609e/ake81XmtY2UwtvS6SnZ80w9M3zD6q9/WDOZb55vnTggJH+Of/C2/Zp6CcOMI6ij6zxeu99R7RnT3bM7tlj6vY7dgUyrAJxg0LK1cYSmygW1wWIEuIVUUPMIkqIV0RNFGLW65EdSG6HSCKR0LXXXqvDhw9Lks477zyNHTvWs/J79eqVNe0muW3t9W0ty4kwnlB2TNOMTF29Vjsi+eT6plXJB61ddKHhaF8k50uOU9vYkCynUvdh0O6970g6CScpa8ztJctMmWbC9wfjETdwI8g2ltiEFyr5ugDRQ7wiaohZRAnxiqiplJgluR0i9957r1pbWyUl/4px1VVXeVq+NSH9wQcfOF7WOm8xyW1EA0++j47kOMIdX1QzpxuaXG+oucVMPzgv9b/fCe5ccdPalj+WcsVNoeUAp2jTAAAAACC+GHM7JA4cOKCf/exn6emrrrpK/fr183QdAwcOzJrevn2742XffvvtrOlBgwZ5UieEU7HJHJJAwbGOI5xKbEvJpNzM6R3HYulyU80t/v+11nr8VzQlNHtO4XVbl2tuMTV7jqkVTYkcSwDu0KYBAAAAQDzRczskDh06pH37OhJV1157ra699tq8y1h/WvDQQw9pzZo16elvfOMbuuGGG9LTJ598ctb8b731luP6WRPhJ510kuNlAXiruSWhJcvsE9spqemge3CntLaZalol1+vO7HXetEpF9bgFAAAAAACVgZ7bIXXkyJGC/xKJ7F6Npmnm/dya3N60aZPj+rzyyitZ0yS3gfJobjGzhiKZNaNzYjulXD24pWSPV7frzkxsS8mkPYltAAAAAACQC8ntCjJ06FDV1NSkpzdu3Oh42Q0bNqRfd+nSRaNHj/ayagAcaG3LTv7OvbyXJtfnb8btEtytbcEkuN0k1+0S20H1MgcAAAAAANHEsCQhUVNToy1btrhaZu3atbr44ovT0+edd55uuummnPN37dpVn//85/XrX/9aUnIc7dbWVtXV1eVdz44dO9IPupSkUaNGeT4eOIDC6moNNTYkh/uYe3kvTZvSU+3tBwsulzlESWNDsOMIOxkehcQ2AAAAAAAoBsntCvPVr341ndyWpJaWloLJ7fvvv19HjhxJT3/lK1/xrX4A8pvaWKUzz5DO+XxPV8tNrjc0Ynh5HpCXL8FNYhsAAAAAABSLYUkqzLhx43TKKaekp1evXq0XXngh5/yvv/66VqxYkZ4eMGCA/vEf/9HXOgLIr9gEdTnHr7YbomT8hASJbQAAAAAAUDSS2xXGMAxdccUV6WnTNHXppZfqueee6zTvpk2bdMkll+jgwY5hDy677DL16NEjkLoCiBdrgnvv3o7PSGwDAAAAAAC3GJakAv393/+9/vmf/1l33nmnJGnv3r265JJLNHr0aNXW1qqqqkpbtmzRs88+K9Ps6FU5YcIETZo0qVzVBhADk+sNtdxvZiW2a2pEYhsAAAAAALhGcrtCXXHFFTpw4IDuvffe9Hvr16/X+vXrbecfP368fvzjHwdVPQAx1dySndiWkj24m1tMEtwAAAAAAMAVhiWpUFVVVbrmmmu0fPlyjRw5Mud8p5xyiubPn6+FCxequro6uAoCiB3rwyNrajo+W7rcVHOLabMUAAAAAACAPXpuR9jYsWO1ZcuWkso455xzdM455+iNN97QK6+8op07d+rIkSMaOHCghg4dqlNPPdWj2gKoZNbEdmqM7cz3U//TgxsAAAAAADhBchuSpBNOOEEnnHBCuasBIIZyJbaljkQ2CW4AAAAAAOAWw5IAAHyTL7GdMrne0MzpHe8xRAkAAAAAAHCC5DYAwBdOEtspJLgBAAAAAIBbJLcBAJ5rbXOe2E6xS3C3tpHgBgAAAAAA9khuAwA8V1drqLEh+dpJYjslM8Hd2JAsBwAAAAAAwA4PlAQA+GJqY5XOGGO6TlBPrjc0YjiJbQAAAAAAkB89twEAvik2QU1iGwAAAAAAFEJyGwAAAAAAAAAQOSS3AQAAAAAAAACRQ3IbAAAAAAAAABA5JLcBAAAAAAAAAJFDchsAAAAAAAAAEDkktwEAAAAAAAAAkUNyGwAAAAAAAAAQOSS3AQAAAAAAAACRQ3IbAAAAAAAAABA5JLcBAAAAAAAAAJFDchsAAAAAAAAAEDkktwEAAAAAAAAAkUNyGwAAAAAAAAAQOSS3AQAAAAAAAACRQ3IbAAAAAAAAABA5JLcBAAAAAAAAAJFDchsAAAAAAAAAEDkktwEAAAAAAAAAkUNyGwAAAAAAAAAQOSS3AQAAAAAAAACRQ3IbAAAAAAAAABA5JLcBAAAAAAAAAJFDchsAAAAAAAAAEDkktwEAAAAAAAAAkUNyGwAAAAAAAAAQOSS3AQAAAAAAAACRQ3IbAAAAAAAAABA5JLcBAAAAAAAAAJFDchsAAAAAAAAAEDkktwEAAAAAAAAAkUNyGwAAAAAAAAAQOSS3AQAAAAAAAACRQ3IbAAAAAAAAABA5JLcBAAAAAAAAAJFDchsAAAAAAAAAEDkktwEAAAAAAAAAkUNyGwAAAAAAAAAQOSS3AQAAAAAAAACRQ3IbAAAAAAAAABA5JLcBAAAAAAAAAJFDchsAAAAAAAAAEDkktwEAAAAAAAAAkUNyGwAAAAAAAAAQOSS3AQAAAAAAAACRQ3IbAAAAAAAAABA5JLcBAAAAAAAAAJFDchsAAAAAAAAAEDkktwEAAAAAAAAAkUNyGwAAAAAAAAAQOSS3AQAAAAAAAACRQ3IbAAAAAAAAABA5JLcBAAAAAAAAAJFDchsAAAAAAAAAEDkktwEAAAAAAAAAkUNyGwAAAAAAAAAQOSS3AQAAAAAAAACRQ3IbAAAAAAAAABA5JLcBAAAAAAAAAJFDchsAAAAAAAAAEDkktwEAAAAAAAAAkUNyGwAAAAAAAAAQOSS3AQAAAAAAAACRQ3IbAAAAAAAAABA5JLcBAAAAAAAAAJFDchsAAAAAAAAAEDkktwEAAAAAAAAAkUNyGwAAAAAAAAAQOSS3AQAAAAAAAACRQ3IbAAAAAAAAABA5JLcBAAAAAAAAAJFDchsAAAAAAAAAEDkktwEAAAAAAAAAkUNyGwAAAAAAAAAQOSS3AQAAAAAAAACRQ3IbAAAAAAAAABA5JLcBAAAAAAAAAJFDchsAAAAAAAAAEDkktwEAAAAAAAAAkUNyGwAAAAAAAAAQOSS3AQAAAAAAAACRQ3IbAAAAAAAAABA5JLcBAAAAAAAAAJFDchsAAAAAAAAAEDkktwEAAAAAAAAAkUNyGwAAAAAAAAAQOSS3AQAAAAAAAACR07XcFUB+7e3t2rp1q9544w21t7fLNE317t1bQ4YM0ciRI3XMMcd4sp4333xTmzZt0vbt25VIJDRw4EANHTpUp5xyiiflAwAAAAAAAICXSG6HTCKR0J/+9Cf97ne/0/PPP6+tW7fmnNcwDJ199tm65JJLdM455xS1vqefflpLlizRhg0bbD8/9dRTNW3aNE2YMKGo8gEAAAAAAADADyS3Q+YrX/mK3njjDUfzmqapZ599Vs8++6y+9rWv6Uc/+pGOPvpox8vecMMNuueee/LOt2XLFl155ZX6/e9/r5tuukndu3d3VD4AAAAAAAAA+Inkdsjs2rWr03sf//jHVVtbq2OPPVbV1dXavn27nnvuOW3fvj09zyOPPKKdO3dqxYoVqq6uLrieBQsWdEpsjx49WiNGjFCXLl20ZcsWPfvsszJNM11+ly5ddPPNN5e4hQAAAAAAAABQOpLbIXXcccfpH//xH3Xeeedp0KBBnT4/cuSIfvGLX+jGG2/UwYMHJUkvvPCCfvazn+m73/1u3rKfeuop3XnnnenpmpoaLVq0SGeffXbWfJs2bdKsWbPSSfQ1a9ZozJgxmjRpUqmbBwAAAAAAAAAlqSp3BZBtyJAhuuGGG/S73/1Os2bNsk1sS1KXLl104YUX6j/+4z9UVdVxGO+9917t2LEjZ/mmaerWW29NTxuGoTvuuKNTYluSTj/9dN19991ZPcFvv/12HThwoJhNAwAAAAAAAADPkNwOmV/96le64IIL1KVLF0fzn3POOfra176Wnj58+LCeeOKJnPM//vjjWQ+pnDhxos4888yc85944omaOnVqevqdd97RAw884KhuAFCM1jYz0OUAAAAAAEA0kdwOma5d3Y8Uk5nclqSXXnop57y//e1vs6YvuuiiguVPmjQpK9luLQMAvLKiKaHZc0w1t7hLVDe3mJo9x9SKpoRPNQMAAAAAAGFDcjsGPvaxj2VN/+1vf7Od78MPP9Qf/vCH9PTgwYNVW1tbsPyBAwdq5MiR6ekNGzbYPvgSAErR2maqaVXy9dLlzhPczS2mli5Pztu0ih7cAAAAAABUCpLbMfDBBx9kTefq/b1161bt3bs3PT1q1CjH68ic98iRI1q/fr3LWgJAfnW1hmZON9LTThLcmYltSZo53VBdrZFnCQAAAAAAEBckt2Ngy5YtWdO5HkL56quvZk2fdtppjtdx+umnZ02/9tprjpcFAKcm1ztPcNsltifXk9gGAAAAAKBSkNyOgTVr1mRNf+pTn7Kdz5qQHjJkiON1DB48OG9ZAOAVJwluEtsAAAAAAIDkdsStW7dO69atS08fc8wx+uxnP2s7744dO7Kmc/XwtmOdd/v27S5qCQDu5Etwk9gGAAAAAACSZD84MyJh//79uvbaa7Pea2xs1FFHHWU7/759+7Kmc81nxzqvtSwnDCO8yafMuoW5noBUOfH67YsMGUZCS5YlE9lLl5tqud9UxqMDNGuGocn1/J027ColZhEfxCyihHhF1BCziBLiFVFTiTFLcjvCrr/+ev2///f/0tMnnXSSpk2blnN+a0K6e/fujtdVXV2dtywn+vTp43qZcujdu3e5qwA4Fvd4vexSqUeP/Vp4W7LNyUxsz728l6ZN6VmmmqFYcY9ZxA8xiyghXhE1xCyihHhF1FRKzNLdLaJWrVqlBx98MD3dvXt33XzzzZ2S0JkOHjyYNe0muW2d98CBA46XBYBSTJvSU717Z//FuXdvg8Q2AAAAAAAVjp7bEfTb3/5WN910U9Z7P/rRjzR8+PC8y1kT34cOHXK8Tuu8PXr0cLxsSnt7u+tlgmIYRvovWnv27JFpmgWWAMqn0uK1uSWhPXuyt3HPHlO337GLIUkiotJiFtFHzCJKiFdEDTGLKCFeETVRiFmvR3YguR0xzz33nK688kolEon0e/PmzdN5551XcNlevXplTbtJblt7fVvLciKMJ5Qd0zQjU1cg7vFqfXhkTU3H0CRLlpkyzQQPk4yYuMcs4oeYRZQQr4gaYhZRQrwiaiolZunyFiFtbW269NJLs5LSU6dO1fTp0x0tb01If/DBB47XbZ23mOQ2ALhhTWzPnG7o0TVVmjm9I5m9dLmp5pb4f1kDAAAAAID/v707D6uq2v84/mESQcCJQSM1NTRnzaG62VWz1Cw1LTM1ZzPLebxmllkOZSq30JyyLMcyzcybWnqrm2kOOWBSqDjjPIGoDAK/P3zcP/ZhOgfOAQ68X8/j87g2a+21gO8+wHfv813pkdx2EocOHdLLL79s2sixc+fOGjt2rNXnCAoKMrXPnTtn9dizZ8+a2uXKlbN6LADYKqPE9t0ntF/q5kKCGwAAAAAAkNx2BidPnlTfvn1NNavbtGmjd955x6bzVK1a1dQ+c+aM1WMtE+FVqlSxaW4AsFZWie27SHADAAAAAACS2wXc+fPn1bt3b128eNE41qxZM82YMUOurrZ9+yyT2xEREVaPPXjwoKlNchuAI1iT2L6LBDcAAAAAAEUbye0C7MqVK+rdu7eio6ONY02aNNFHH30kDw8Pm88XEhIiPz8/o71v3z6rx+7du9f4v5ubmx588EGb5weArOwPtz6xfVdGCe794SS4AQAAAAAoCkhuF1BxcXHq37+/jh49ahyrW7eu5s6dq+LFi+fonO7u7vrnP/9ptM+ePav9+/dnO+78+fOmfg0aNFCZMmVytAYAyEy9ui7q0+vO/61JbN+VNsHdp9ed8wAAAAAAgMLPPb8XgPTi4+M1cOBAUymQatWq6ZNPPpGPj0+uzv3UU09p/fr1Rnv58uWqV69elmNWrlyp5ORko92mTZtcrQEAMtOvj6saNUy1OUH9UjcX1alNYhsAAAAAgKKEJ7cLmNu3b2vYsGHatWuXcey+++7TZ599ppIlS+b6/C1btlS1atWM9rfffmuay9KxY8e0aNEiox0QEKDOnTvneh0AkJmcJqhJbAMAAAAAULSQ3C5AUlNTNW7cOP3888/GseDgYC1evFj+/v52mcPFxUUjR440zfnaa69p+/bt6fpGRESod+/eSkhIMI4NHjw4x2VRAAAAAAAAAMBeKEtSgJw5c0bfffddumMtW7a06TzBwcH68ccfM/14ixYt9PLLL2vhwoWSpNjYWPXu3VsPPvig6tatK1dXV0VGRmrbtm1KTf3/jdnat2+vF1980aa1AAAAAAAAAIAjkNwuQNImktMeS1vv2hrW9B85cqTi4+O1ZMkS49iePXu0Z8+eDPu3bdtWkydPtmkdAAAAAAAAAOAolCUpolxdXTVhwgQtWLBA9evXz7RftWrVNH36dIWGhsrT0zPvFggAAAAAAAAAWeDJ7QLk3nvvVWRkZJ7O2axZMzVr1kwnTpzQwYMHdeHCBSUnJysoKEghISGqXr16nq4HAAAAAAAAAKxBchuSpEqVKqlSpUr5vQwAAAAAAAAAsAplSQAAAAAAAAAATofkNgAAAAAAAADA6ZDcBgAAAAAAAAA4HZLbAAAAAAAAAACnQ3IbAAAAAAAAAOB0SG4DAAAAAAAAAJwOyW0AAAAAAAAAgNMhuQ0AAAAAAAAAcDoktwEAAAAAAAAATofkNgAAAAAAAADA6ZDcBgAAAAAAAAA4HZLbAAAAAAAAAACnQ3IbAAAAAAAAAOB0SG4DAAAAAAAAAJwOyW0AAAAAAAAAgNMhuQ0AAAAAAAAAcDoktwEAAAAAAAAATofkNgAAAAAAAADA6ZDcBgAAAAAAAAA4HZLbAAAAAAAAAACnQ3IbAAAAAAAAAOB0XFJTU1PzexEAAAAAAAAAANiCJ7cBAAAAAAAAAE6H5DYAAAAAAAAAwOmQ3AYAAAAAAAAAOB2S2wAAAAAAAAAAp0NyGwAAAAAAAADgdEhuAwAAAAAAAACcDsltAAAAAAAAAIDTIbkNAAAAAAAAAHA6JLcBAAAAAAAAAE7HPb8XADiTkydPKiIiQufOnVNKSoqCgoIUEhKiatWq5ffS4ISSkpJ06NAhRUZGKiYmRgkJCfLx8VFAQIBq166t4ODgXM9BzMKeUlJSdODAAUVFRenKlStyd3dXYGCgqlWrpvvvv98ucxCzyE95EX/h4eE6fvy4zp8/Ly8vLwUFBalu3boKCgqy2xyAvRCvsIczZ87o8OHDOn36tOLi4uTu7q6SJUuqatWqqlWrlooVK2a3uYhZ5EZiYqKioqIUHR2t8+fP68aNG0pOTpavr6/8/f1Vq1YtVahQwW7zEa9wNgU1Zkluwyn16NFDO3fuzPV5Bg8erCFDhmTb75dfftHcuXO1d+/eDD9evXp19e/fX+3bt8/1mlD4nT9/XgsXLtS3336r2NjYTPuFhISoW7du6tKli9zc3Gyag5iFPcXExOjTTz/VihUrFBMTk2Gf6tWrq1evXnruuedyNAcxi8zcuHFDERERCg8PV3h4uA4cOKDo6Gjj48HBwfrvf/+bqzkcHX8pKSlasmSJlixZolOnTqX7uKurqx555BENHz5cdevWzdEcKBgcHa+XL182nfvAgQO6du2a8fGOHTvqvffey82nQLwWMY6I2Vu3bumXX37RTz/9pO3bt+v8+fOZ9vX09FTbtm3Vt2/fHN9IJGaLDkfEa0REhFauXKm9e/cqKipKycnJWfavWLGiOnfurB49esjLy8vmz4F4LVry4vfYjCQnJ+v5559XRESE6fi0adPUqVMnm87lDDHrkpqampovMwO5YK/k9tixY9WvX79MP56amqqpU6fqiy++sOp8Tz/9tN577z27Pn2AwmXz5s0aP358pgnCjNStW1dz5sxRYGBgtn2JWdhbeHi4XnvtNV28eNGq/i1atNCMGTPk4+NjVX9iFpn57LPPtGbNGh05ckQpKSmZ9svNHwV5EX9Xr17V8OHD9fvvv2fb18PDQyNHjlTfvn2tPj8KBkfH69ixY7V7927TH8QZyW1ym3gtOhwVs8eOHVOnTp108+ZNm9bj4eGhwYMHa+DAgTaNI2aLBke+xi5atEjTp0+3eU0VKlTQrFmzbErmEa9FR178HpuVhQsXasaMGemO25rcdpaY5cltOCVXV1ebn2SVZLoL6+LiolatWmXZf+bMmen+4H3wwQdVp04dubm5KTIyUtu2bdPde0T/+c9/5Obmpg8++MDmtaHw27p1q4YPH66kpCTjmLu7ux5++GFVq1ZNXl5eunr1qvbu3au//vrL6BMeHq5evXpp1apV2SYMiVnYU3h4uF566SUlJCQYx7y9vfXoo4+qcuXKSklJUVRUlLZt22b0+emnnzRs2DDNnz9f7u7Z/5pBzCIzu3bt0qFDhxw6h6PjLykpSUOGDNGuXbuMY+7u7mrWrJmqVq2qGzduaPfu3YqMjDT6v//++/L19VXnzp3t9FkiLzg6Xv/73//q+vXrDju/RLwWNY6K2fj4+HSJbTc3N9WsWVPVq1eXv7+/kpOTdeLECW3btk1xcXGS7sRTaGiorl+/rjFjxlg1FzFbdOTF7wR3VapUSVWrVtW9994rX19fJScn6+LFi9q3b5+ioqKMfqdOnVKfPn20ePFi1alTJ9vzEq9FS17GrKVTp05p9uzZuT6PM8UsyW04pc8//9zmMT/++KMGDx5stBs1apRlvayffvpJCxcuNNp+fn766KOP9Mgjj5j6RURE6NVXX9W5c+ckSevWrVPDhg314osv2rxGFF7x8fF68803TYntxo0ba/r06brnnnvS9d++fbvGjBljPC179OhRffTRRxo/fnymcxCzsKe4uDgNGzbMlNhu0aKFpkyZorJly5r6nj17Vv/617+0Y8cOSXdu5Hz44YcaNWpUlnMQs7CVt7e3atWqpYMHD9r8VKClvIi/WbNmmf4gqFatmubOnat7773X1G/dunUaP3688TNi0qRJqlu3rqpXr57jzw/5z57xmhF/f39VqVLFLu9mlIhX2D9m69evrxdeeEGtW7fO8AGN69evKzQ0VMuWLTOOffLJJ2rUqJFatGiR7fmJ2aLNXvHq5eWlVq1aqVWrVnrkkUfk7++fad/du3drwoQJOnbsmKQ7vy+//vrr+uabb+Th4ZHlPMQrHP17wV1vvfWW4uPjJUkBAQFWvwPXkjPFrGuezQTkszVr1pjaHTt2zLRvamqqZs2aZbRdXFz08ccfp/uDV5Jq1qypxYsXy9PT0zg2e/Zs48UEkO48cXXmzBmjfd9992nBggUZJrYl6ZFHHtEnn3xievL166+/VmJiYob9iVnY29KlS00x+/DDD2v27NnpEtuSVL58eS1cuFC1atUyjn3++edGMjAjxCyy4+npqbp166p79+6aNm2a1q9frz/++ENLly5V6dKlc3XuvIi/c+fOaenSpUa7bNmy+uKLL9L9QSBJ7du31+TJk412UlKSPvzwQ5s+J+QvR8ardOfmyyOPPKIBAwYoLCxMP/30k3777TdNmzbNDqsnXosiR8ZsgwYNtHTpUn355Zd67rnnMn3noa+vr9566y0NGDDAdDyjt9JbImaLFkfGa7du3RQWFqZ27dplmdiW7jwgt2zZMgUEBBjHDh8+rP/9739ZjiNeix5H/16QmTVr1mjbtm2S7iSjc7ofkrPFLMltFAlXrlzRr7/+arS9vb3Vpk2bTPtv3rzZ9BaSDh06qHHjxpn2r1y5sql298WLF7Vq1apcrhqFyfbt203t3r17y9vbO8sxDzzwgFq2bGm0b9y4oQMHDmTYl5iFvaV9isrFxUVvv/12lmVGPD09NXHiRKOdkJCgBQsWZNqfmEV2QkNDtWrVKr311lvq1KmTQkJC5Opqn19d8yL+PvnkE9MNyVGjRmX5x8yzzz5rWsOWLVv0999/ZzkHCg5Hxqt05yb54sWLNWrUKLVq1SrTm+M5RbwWPY6K2ZCQEK1cuTLL11RLQ4cONSVMjhw5Yir/kBFitmhx9GusLcqWLZtu3660uYaMEK9FT37E7OXLl/X+++9LuvP32zvvvGNVmciMOFvMktxGkfDdd9+ZykG0atVKJUqUyLT/xo0bTe3u3btnO8eLL75oqgNueQ4UbZa7xNevX9+qcQ8++KCpfeHChQz7EbOwp8OHD5tirVGjRqpcuXK24+rVq6dq1aoZ7Y0bN2a6gQoxi/zk6PhLTU3VDz/8YLRLliypZ555Jts5unbtampv2rQp2zFAbhGvsKecJFI8PDzS7YUUHh6eaX9iFvmtUaNGpnZ271YkXpEXJk+erGvXrkmSXnjhBTVo0CBH53HGmCW5jSLhm2++MbWzKkly+/Zt09uKypcvb9UOyEFBQaaE5d69e3XlyhXbF4tCyTLBV7x4cavGeXl5mdouLi7p+hCzsLeDBw+a2rb8YpS27+XLl7Vnz550fYhZ5Ke8iL8///zTdFOzefPmprImmWnZsqWpZueWLVuyHQPkFvGKgqBixYqm9qVLlzLtS8wiv1mW2snsYQ6JeEXe+Pnnn/X9999LurMnx+jRo3N8LmeMWZLbKPQiIyP1119/Ge3g4GA99NBDmfY/dOiQYmNjjXZOkzrJyckZJnVQNFnWpjp79qxV46Kjo03tSpUqpetDzMLe7t7xvysoKMjqsZZ9025Cchcxi/yUF/H3xx9/ZDouK8WLF1eNGjWMdmRkpGmtgCMQrygIbty4YWpntTkfMYv8lnZfGkmqUKFCpn2JVzjajRs3NGnSJKP9+uuvy8/PL8fnc8aYJbmNQs/yqe0OHTpk+PTrXZb13dJenNmpWbOmqX306FGrx6Jwe+yxx0ztDRs2ZDsmOTnZ9Fae4ODgDHccJmZhb5Yb5RUrVszqsZZ39Y8cOZKuDzGL/JQX8Wc5h+W4rFiuhxiHoxGvKAgiIyNN7axurBOzyG/r1683tZs3b55pX+IVjhYaGmrccHn00UetKiGSFWeMWZLbKNRu376t7777znQsq5IkUvqLz5YNe8qXL5/luVB0NW/e3JSYXr16tX766adM+6empmr69Ok6fvy4cWzQoEEZbkJBzMLefH19TW1b7rhb9s0opohZ5Ke8iD/L45bjsmK5HmIcjka8Ir/dvHlTmzdvNtqurq5ZvtOWmEV+WrdundauXWu0GzZsqKZNm2ban3iFI+3bt0/Lli2TdOcho4kTJ+b6nM4YsznbNhNwEr/++qupXlujRo3S1XOzZLnxX7ly5ayez7JvVhtLoGhxc3NTaGiounXrpmvXrik5OVmvvfaaunTpomeffVbVqlWTl5eXrl69qn379mnx4sXasWOHMf7FF1/Uc889l+G5iVnYm+XTUhk9fZ2ZQ4cOmdoZleAhZpGf8iL+0s7h7u6ugIAAu88B2Avxivz26aef6ubNm0a7SZMmKlOmTKb9iVnkpeTkZF29elUHDhzQ6tWr9eOPPxofu++++xQaGprlO8OJVzhKUlKS3nzzTaPm+8CBAzMsY2orZ4xZktso1GzZSPKutL9YSVKJEiWsns+yr+W5ULRVrVpVq1at0htvvKGdO3cqJSVFK1as0IoVKzId4+/vr6FDh6pLly6Z9iFmYW+WddW2bt2q27dvy909618bbty4oZ07d5qOZRRTxCzyU17EX9rjXl5eWf7Rm9M5AHshXpGfDh8+rPnz55uODR48OMsxxCwc6csvvzTVL05OTk7Xp1ixYurcubNGjhyZbnNJS8QrHGXBggXGg0VVq1ZV//797XJeZ4xZypKg0IqJiTGVffDy8lKbNm2yHWd58eWm1iw/fGCpYsWKWrJkiaZNm6aSJUtm2bdmzZr6+OOPs0xsS8Qs7K9s2bKqV6+e0b548aK+/vrrbMd98cUX6TaESkhISPdHATGL/JQX8Zf2uDW7y2e1HmIcjka8Ir/cvHlTI0aMUGJionGsY8eOaty4cbbj7iJmYW8pKSlKTk42/lny9fXVqFGjNHr06GwT2xLxCsc4evSo5s2bZ7QnTZpk0++0WXHGmCW5jUJr/fr1pl+UWrVqZdUPn4SEBFPblhcIy76Wm7IBUVFR6tu3r15//XXFxMRk2TciIkIvvPCCBgwYkOXbeYhZOELfvn1N7enTp2vPnj2Z9v/11181Z86cDD9mGVfELPJTXsRf2jk8PDxsWB0xjrxHvCI/pKamaty4cTp8+LBxrGLFinrjjTeyHUvMIj9dv35d06ZNU4sWLbR69eps+xOvsLfU1FS9+eabRr6rU6dO2d4UtIUzxixlSVBopd3kQbKuJImU/s5U2gR5diz7Fi9e3OqxKPx+++03DRo0SLdu3ZJ05wdF586d9fTTTxs1t69du6bw8HCtXLlS//vf/yRJv/zyizp27KilS5eqatWq6c5LzMIRWrdurebNm+vnn3+WdKfkSK9evdSjRw916NBBlStXVmpqqqKiorRmzRqtWLFCt2/fliR5e3sbd+ldXFzk5eVlOjcxi/yUF/Hn6elpvNYnJSXZtD5iHHmNeEV+mDJlijZt2mS0fX19NXv27HSbWmeEmIUjde3aVV27djXaN2/e1OXLl7Vv3z6tWbNG27ZtkyRdu3ZN48ePV3R0tIYOHZrp+YhX2NvKlSu1e/duSVKpUqU0duxYu57fGWOWJ7dRKEVFRSk8PNxoBwcH6+GHH7ZqrLe3t6ltyx+9lk+DWZ4LRdfJkyc1ePBg44eEn5+fli1bpokTJ6pRo0by8/OTh4eHAgIC1LJlSy1cuFBvv/22Mf7KlSt69dVXjfFpEbNwBBcXF73//vuqVauWcSwxMVGLFi1S+/btVadOHdWtW1cdO3bUkiVLjMT20KFDTTtq+/j4yNXV/OsGMYv8lBfxl/a45ZjsWK6HGIejEa/Iax9//LGWLFlitD09PfXxxx+revXqVo0nZpGXvL29VaFCBbVr106fffaZQkNDTU+zzpkzR7/++muW4+8iXpFb58+f18yZM432v/71L5UuXdquczhjzJLcRqFkuZFkhw4drC6Cb3nxWdaPzYplX3744K4ZM2aY6k298847pprGGbF8auDEiRNavnx5un7ELBylVKlSWrZsmZ5//nm5ubll2dfLy0tvvfWWBg0apIsXLxrH/fz80vUlZpGf8iL+0h6/deuWsYu9PecA7IV4RV5atmyZPvzwQ6Pt7u6u0NBQNWnSxOpzELPIT23bttWbb75pOpY2pi0Rr7Cnd955R9evX5ckNWnSRJ06dbL7HM4YsyS3UeikpKRo3bp1pmPWliSRpKCgIFM7q1rHls6ePWtqlytXzuqxKLyuX7+uzZs3G+2KFStatbmpJA0YMMDU/vbbb9P1IWbhSF5eXpoyZYrWr1+vgQMHqn79+vL395eHh4fKlCmjOnXqaOjQodqwYYO6d++umJgYxcbGGuPvv//+dOckZpGf8iL+0s5x+/ZtXbp0ye5zAPZCvCKvfPvtt3r33XeNtouLi6ZMmaKWLVvadB5iFvmtc+fOCg4ONtoHDhxIF1t3Ea+wl927dxt5BQ8PD9M7ve3JGWOWmtsodH777TedP3/eaDds2FAVK1a0erxlTeMzZ85YPdbyD+QqVapYPRaF14EDB0w7bTdu3NjqdxLcc889uvfee3X69GlJ0uHDh5WQkGCqGUvMIi9UqVJFI0aMyLbfgQMHTO06deqk60PMIj/lRfxVrVrVqIV4d47AwECr5rD8oyCjvRYAeyJekRe2bNmi8ePHKzU11Tg2YcIEPfvsszafi5hFfnN1ddXDDz9s2lAyMjLSVJrvLuIV9nLt2jXj/0lJSWrXrl22Yyyfun7jjTc0YcIEoz116tR0r8POGLM8uY1CJ6cbSd5lefFFRERYPfbgwYOmNkkXSNLly5dN7YCAAJvGp+2fkpJi+qEmEbMoWPbs2WNq161bN10fYhb5KS/iz/K4LXNY9iXG4WjEKxxt+/btGj58uLE/hyQNHz5cL730Uo7OR8yiIPD39ze175aKsES8wlGSk5Oz/Zf2hqJ0J5+Q9uMZlRxxxpgluY1CJS4uzlT+wcvLS0899ZRN5wgJCTHViN23b5/VY/fu3Wv8383NTQ8++KBNc6NwSvuUtSTFx8fbNN5yE0nLulXELAqS//znP8b/y5Ytq3/84x/p+hCzyE95EX8NGzbMdFxW4uPj9ffffxvt6tWry9fX1+r1ATlBvMKR9u/fr9dee820yVj//v316quv5vicxCwKgri4OFM7o31mJOIVzscZY5bkNgqV77//3pQ4fPLJJ+Xj42PTOdzd3fXPf/7TaJ89e1b79+/Pdtz58+dN/Ro0aKAyZcrYNDcKJ8s4iIqKsnpsUlKSTp48abSLFSuW7gcEMYuCYuvWrTp+/LjR7tChg2k3+buIWeSnvIi/2rVrm+oV/vzzz1btNr9582YlJSUZbVvr0AI5QbzCUQ4dOqSXX37ZtKl6165dNWbMmFydl5hFQWD5hGpGJUkk4hX288QTTygyMtKmf4MHDzadY9q0aaaPZ7QhpTPGLMltFCrffPONqZ3TnWMtn/Zevnx5tmNWrlxpqqts7YaBKPxq1qxpSvDt3LlTFy9etGrsli1bTH8Q1K9fP8N+xCzyW2JioqZNm2a0vby8sny7MTGL/OTo+HNxcVHr1q2NdmxsrNavX2/VHGmlPQfgKMQrHOHkyZPq27evYmJijGMdOnTQxIkTc31uYhb57e+//zbd8A4MDFRISEiGfYlXOBtnjFmS2yg0Tp48aar1es899+jhhx/O0blatmypatWqGe1vv/1Wu3btyrT/sWPHtGjRIqMdEBCgzp0752huFD7e3t566KGHjHZCQoImT56c7birV69q+vTppmOPP/54hn2JWeSn5ORkjR49WkeOHDGODRkyxLSLvCViFvkpL+KvX79+KlasmNGeOXOmrl69mmn/tWvXmtbQsmVLPfDAA1nOAdgL8Qp7On/+vPr06WN6mKNVq1aaNm2a1ZuqZ4eYhT2cOXNGly5dsmnMtWvXNHbsWFOt4g4dOmQZ28QrnI2zxSzJbRQaa9asMbWz+wGTFRcXF40cOdJop6am6rXXXtP27dvT9Y2IiFDv3r1Nb9MYPHiwihcvnqO5UTgNGjTI1N64caOGDh2a6RPc4eHh6tatm6Kjo41j/v7+6tKlS4b9iVk4wjvvvKM5c+bo9OnTmfaJiIhQ9+7dtWnTJuNYgwYN1KtXryzPTcwiP+VF/JUrV8707oXLly+rZ8+eGV5P69atM+1c7+HhoWHDhtn0OQG5QbzCXmJiYtS/f39T7Dz22GOaOXOm3Nzc7DYPMQt7iIiI0JNPPqkpU6YoPDw8y763b9/Wxo0b1alTJ0VGRhrHAwICNHDgwCzHEq9wNs4Wsy6plltnAk4oNTVVLVu2NCUCf/jhB1WqVClX550xY4YWLlxoOvbggw+qbt26cnV1VWRkpLZt22bagbZ9+/b64IMPcjUvCqfQ0FDNmzfPdKxYsWJq0qSJqlWrJm9vb127dk379u3Tn3/+aern4eGhhQsX6pFHHslyDmIW9jR06FAjaR0SEqJatWopMDBQrq6uunTpkvbv36/Dhw+bxlSvXl2LFy+2uhY2MYvMREdH68knn8zwY2nLg0jKNGGyePFiNWnSJNM5HB1/iYmJ6tOnj3bv3m0c8/DwULNmzVSlShXdvHlTu3btMv2RLEmTJ0/mnQlOxtHxunbtWo0fPz7b87u4uMjVNePnlyzrw1oiXosWR8XsN998o3HjxpmOubq62vzQ0bPPPqupU6dm2YeYLTocFa+bN282PYRUunRp1apVSxUrVpSfn5/c3NwUFxenEydOaN++fbp27ZppfMmSJbV48WLVrFkz28+BeC1a8uL3WGuEhYVp9uzZRnvatGlWl+91pph1z9PZAAfZsWOHKbHdsGHDXCe2JWnkyJGKj4/XkiVLjGN79uwxlT9Jq23btlaVm0DRNGLECHl4eOjjjz82fqAlJiZq69at2rp1a6bjypQpo/feey/bxLZEzMJxDh8+nC6RbalVq1aaOnWqTbtiE7PITGpqarpf/jOTWb/snuFwdPwVK1ZMYWFhGjZsmHbu3CnpzkbBmzdvzrC/u7u7RowYwR+xTsjR8ZqSkmLV+W1ZhyXitWhxVMxmdCxt+QZrWTOGmC068uJ3AulOWcis/i5Lq379+po6daqqVq1qVX/itWjJq5h1JGeKWcqSoFBYu3atqd2xY0e7nNfV1VUTJkzQggULMt3IT5KqVaum6dOnKzQ0VJ6ennaZG4XT4MGD9fXXX6t9+/bZxkrZsmX1yiuvaP369WrWrJlV5ydmYU8tW7ZUkyZNTPXWLLm4uOihhx7SggULFBYWZlNiWyJmkb/yIv7KlCmjzz//XK+//roqVKiQ6Tr+8Y9/aMWKFerfv79N5wfsiXiFsyFmkRsNGzbU+PHj9c9//lN+fn7Z9vfw8FDTpk314YcfasWKFVYntu8iXuFsnCVmKUsC2ODEiRM6ePCgLly4oOTkZAUFBSkkJETVq1fP76XBCSUmJioiIkJRUVGKjY1VfHy8SpQoodKlS6tmzZqqUqVKrjfdIWZhDwkJCTpw4IBOnDihy5cv6/bt2/L29lbFihVVv359q0uQWIOYRX5ydPylpqbqwIEDOnbsmC5cuKDixYsrKChI9erVU1BQkF3mAOyFeIWzIWaRG6mpqTpx4oSOHz+uM2fOKC4uTsnJySpRooT8/PxUpUoVPfDAA1k+9GHrfMQrnElBjlmS2wAAAAAAAAAAp0NZEgAAAAAAAACA0yG5DQAAAAAAAABwOiS3AQAAAAAAAABOh+Q2AAAAAAAAAMDpkNwGAAAAAAAAADgdktsAAAAAAAAAAKdDchsAAAAAAAAA4HRIbgMAAAAAAAAAnA7JbQAAAAAAAACA0yG5DQAAAAAAAABwOiS3AQAAAAAAAABOh+Q2AAAAAAAAAMDpkNwGAAAAAAAAADgdktsAAAAAAAAAAKdDchsAAAAAAAAA4HRIbgMAAAAAAAAAnA7JbQAAAAAAAACA0yG5DQAAUMisWbNG1atXN/6tWbMmy/6PP/640ffxxx+367mBvJA2Jnv06JHfy5Fk25rCwsJM/Xfs2JFHq0RBs2PHDlMshIWF5feSAAAo0EhuAwCAAidtspVEDwAAAAAgIyS3AQAArMRTywAAAABQcJDcBgAAAAAAAAA4HZLbAAAAAAAAAACn457fCwAAAIDz6NSpkzp16pTfywAAAAAAntwGAAAAAAAAADgfktsAAAAAAAAAAKdDWRIAAFDoXblyRXv37tW5c+cUFxenUqVKqUqVKqpfv748PDzye3mSpFOnTungwYO6cuWKYmNj5evrK39/f9WvX19BQUH5vTy7OnjwoA4fPqyLFy+qePHiCgoKUo0aNVShQgW7z5WQkKC9e/fq7NmzunLlilJTU1WmTBlVrFhR9evXl7u7fX8dPnv2rA4cOKBz584pPj5epUuXVvXq1VW7dm25uha850ouXbqkI0eO6NSpU4qNjVVSUpJ8fX1VunRp1a5dWxUrVsy3taWmpio8PFxRUVG6dOmSSpQooaCgINWrV08BAQF2n+/GjRvas2ePLly4oCtXrsjNzU1lypRR1apVVatWrQL5/bvr5MmTOnr0qKKjo3Xjxg1JUsmSJRUYGKh69eqpTJky+bzCO27fvq29e/fq9OnTunjxojw8PFSlShU1btxY3t7eWY6NjY3VH3/8oRMnTig+Pl6lSpVSSEiIGjRokKvvTV5dA4mJidq5c6dOnz6tmJgYlSlTRuXKlVOjRo3k5eVllzkyEh0drb/++ksXLlxQTEyM/Pz89MQTT2T7c8WZrwcAQNFCchsAADi9xx9/XNHR0ZKk4OBg/fe//5UkRUVFadasWfrll1+UlJSUbpyPj4/69Omj/v37q3jx4hme+/Tp02rZsmWGH3v99df1+uuvZ7quLVu26N5778304zdv3tSSJUu0evVqnThxItN+NWrU0CuvvKI2bdrIxcUl0355Yc2aNabPedq0aVbV4E5JSdFXX32lBQsWGN+rtFxcXNSoUSMNGjRIjzzyiKTMv6/W2L9/v+bOnavt27crPj4+wz4+Pj56+umnNWjQIKtvIFSvXt34f5MmTbRkyRJJ0p49exQWFqbff/9dKSkp6cb5+/tr4MCB6t69e5ZJoazizRYdO3bUe++9l+54cnKydu7cqU2bNmn79u06fvx4lucpV66cunXrpm7dusnX1zfX67JGSkqKli9frk8++URnz55N93E3Nzc1bdpUgwYNUr169XI936+//qqFCxdqz549Gb5OSFLp0qX1/PPP6+WXX1bJkiVzPWdu3bx5Uz///LN++OEH7dy5U5cvX86yf61atdS7d289/fTTcnNzc9i6Mnt9iIuL0/z587VmzRpdunQp3bgSJUqoT58+evXVV9PdcIqOjlZoaKg2btyY4fcnMDBQo0ePVocOHaxaY15fA9evX9eHH36ob775RnFxcek+XqJECbVt21ZDhgzJ0Y3MzF6TNm/erE8++UT79u1TamqqaUxQUFCmcznj9QAAKNq43QoAAAql1atX67nnntPmzZsz/QM9Li5OYWFh6tOnj2JjY/N0fb/++queeOIJzZo1K8vEtiT99ddfGj58uPr27avr16/n0QrtJy4uTj179tTEiRMzTGxLd57S3bVrl/r27avZs2fneK5bt25p1KhReuGFF/TTTz9lmti+u64vv/xSrVu31saNG3M857x58/TSSy9p27ZtGSa2pTtPh06ePFlDhw5VYmJijufKrS+++EK9e/fWihUrsk3qSdK5c+c0a9YsdejQQQcPHnT4+mJjY9W9e3e9++67GSa2pTvJyV9++UUvvviili1bluO5rly5Ytzc2rFjR6avE5J09epVLVy4UK1atdKuXbtyPKe9jBw5UiNGjNCGDRuyTWxLd94tMWbMGPXt21dXrlzJgxX+v1OnTum5557TggULMkxsS3eeEp49e7ZeeeUV0/WxdetWdejQQd99912m358LFy5o7NixCg0NtWo9eXkN/P3332rbtq2WLFmSYWJbuvO5r1q1Su3bt9cff/xh0/kzcvv2bb3xxhsaNGiQ9u7dmy6xnRlnvh4AAEUbT24DAIBCZ8OGDXrjjTeMP+qDg4MVEhIiHx8fXb16Vfv27TPeui/deer2rbfe0r///e88Wd9XX32lt99+W8nJyabjadd548YN/f3336YE37Zt29StWzetWLFCPj4+ebLW3IqPj1fv3r114MAB0/FixYoZ5SVu3bqlw4cP6/Tp00pJSVFYWJgCAwNtnuvKlSvq379/ugRU8eLFVaNGDQUGBsrNzU1nz57Vn3/+aSRvbt26peHDh2vy5Ml6/vnnbZpz0aJFpqRa5cqVVblyZXl7e+vChQvav3+/EhISjI//+OOP+vDDDzVmzBibPz97sEy+3y0LUa5cOfn6+io5OVlXrlxRZGSkrl27ZvSLjo5Wr169tGbNGoeVKrl586b69OmjP//803Tcy8tLdevWVUBAgGJiYhQREaHLly8rJSVF77zzTo5Kbpw4cUL9+vXTqVOnTMdLlCihWrVqyd/fX8nJyYqOjlZERITxdbt27Zr69OmjuXPn6rHHHsv5J5tLlglLHx8f3X///SpTpoxKlCihxMREnTt3TpGRkaYbPL///rv69++vlStXqlixYg5fZ2xsrPr06WN8nX18fFSvXj2VLl1a169f1/79+01xtnXrVs2YMUPjx4/XH3/8oVdffdVIdgcGBqpmzZry8fHRpUuXtHfvXtO1NW/ePNWpU0dPPPFElmvKq2vgyJEj6tWrl+kc0p13cdSoUUN+fn66dOmS9u/fr/j4eF27dk0DBw7U2LFjsz13Vt5//319/fXXRrty5cq677775O3trYsXL6Z7LZac/3oAABRtJLcBAEChcvXqVY0bN06pqalq3Lixxo4dq7p165r6xMfHa86cOVqwYIFxbMOGDXrppZfUqFEjU99y5cppy5YtkqRNmzZp+vTpxsfGjh2r1q1bZ7qWcuXKpTu2ffv2dIntdu3aaeDAgbr//vvT9d+xY4cmT56sQ4cOSZIOHTqkt956S7Nmzcrqy1BgzJo1y5RMcXd314ABA9SvX790Cfo//vhDkyZNUmRkpCZPnmxT+YSUlBSNHDnSlNgODAzU8OHD1a5du3SJvNjYWH3yySdauHChUlJSlJqaqnfeeUe1a9fWAw88YNWchw4d0u7duyVJTzzxhEaOHKmqVaua+sTExOi9997TmjVrjGOfffaZunbtmmHJmrTxZq2rV6/q1Vdf1cWLF41jWd0cCAgI0LPPPqvmzZtnWnc8JSVF27Zt08yZMxURESHpTnmF0aNH66uvvrJpfdb64IMPTIntYsWKadCgQerZs6epHnNycrI2btyoKVOm6PLly3r77bdtmufWrVsaPHiwKZFXuXJljRgxQk888US6uLtw4YLCwsKMzzspKUljxozRt99+m6/18B944AG1b99ezZo1y/C1Q7rzua5fv16hoaHGE94HDx7URx99pNGjRzt8jR9//LFR53nMmDHq2LGjaZ+DpKQkzZ8/X2FhYcaxpUuXqkOHDho+fLgSExN1//33a8KECUa5oruuXr2qN998Uz/++KNxbNq0aWrZsmW25ZscfQ0kJSVp9OjRpsR2QECA3njjDbVu3dpUmujGjRv67LPPNG/ePMXGxuqDDz7I8txZOXjwoHbu3ClJat68ucaOHZvuNSkuLs70dHxhuR4AAEUXZUkAAEChcvPmTcXHx+uZZ57R4sWL0yW2pTtP8o4aNUo9e/Y0Hf/yyy/T9XV3d9e9996re++9V6VLlzZ9rHTp0sbHMvpnmTC5ceOGRo8ebSS2XVxcNGXKFM2YMSPT5NRDDz2klStXqkGDBsax//znP07xVvAjR44Y9V8lydXVVbNmzdKwYcMyfPK8YcOGWr58uerVq6eEhATdvHnT6rk+/fRTbd++3WjXqlVL69at03PPPZfhE6p+fn4aOXKkQkNDjURYQkKCpk6davWc165dU0pKivr37685c+akSyJJdzb1u5twuys5Odn0ZGVaaePNmn+lS5fWpEmTTIntxx57TEOGDMnw/M8884x++uknjR49Wo0aNcp0Q01XV1c1bdpUX375pZo2bWoc379/v3bs2GHV18cWBw4c0IoVK4y2u7u7PvroIw0cODDdRoNubm56+umntXTpUpUtWzbdk7HZmT59unGzSJL++c9/au3atWrdunWGN1QCAwP17rvvaty4ccaxq1ev5tk7PTLy5ptv6ttvv1W/fv0yfe2Q7jz13rlzZ3399dcqX768cXzFihWZlsmwp5iYGPn6+mrZsmV64YUX0m3g6+HhocGDB6tr167GseTkZPXp00cXLlxQnTp19OWXX6ZLbEt3Xn///e9/m2pOnz59Wr///nuWa8qLa2Dp0qX666+/jHZAQIBWrFihp556Kl3N/RIlSmjw4MGaOXOmXF1dFRMTk+W5s3L3HUldunTRvHnzMnxN8vHxMb3boTBcDwCAoo3kNgAAKHQqVaqkKVOmZJq0uGvQoEGmZEt2SZHcWrlypanmbL9+/awqg1GiRAmFhoaakrSLFi1yyBrtadmyZaYSAF26dMnySXfpTuJlxowZmW7wmZH4+HjT18PX11fz5s1LdzMiI23atDEl1nbs2GFTXd2GDRtq1KhR2fYbMWKEqW2PWEtMTNSQIUNMT8bXr19fYWFh6ZKIdwUFBWX6sYwUK1ZM06ZNM4357rvvcr7oTCxZssRUaqNnz55q0aJFlmOqVKmiiRMn2jTP+fPntWrVKqMdHBysjz76yKp469Onj5o1a2a0v/vuO9NNhbyU1Ua1GbnnnntMGz3GxcXZtEFrbrzxxhuqVq1aln0GDBhgeto6JiZGHh4eCg0NzbIEk7u7u/r27Ws6lvYmV0YcfQ2kpKSYbupJ0rvvvqsKFSpkOU/r1q3VrVs3q9eVmapVq2rChAlWbT5cWK4HAEDRRnIbAAAUOn369LHqj/NSpUqZnoi+cOGCVZuz5dTSpUuN/3t7e+u1116zemz58uX11FNPGe3ffvstXzcmzE5qaqq+//57o+3q6qqBAwdaNbZixYp65plnrJ5r/fr1pk3yevXqZVPNbsvkmC1Jv4EDB6Z7EjMjISEhCg4ONtp///231XNkJCUlRf/617/022+/Gcfuv/9+zZ8/X15eXrk6t6XAwEDTdbJ37167nj8hIcG0oWexYsX0yiuvWDW2devWqlGjhtVzrVy50rRR3uDBg236evXp08f4f1JSkn799Verx+a3Fi1amBK09v4+ZqR8+fJq3759tv3uuece3XfffaZjTz31VLYJYUl69NFHTe20T0zbiy3XwK5du0wb59apUyfbGzV3Wd5wzYk+ffpYXU+9KF8PAIDCg+Q2AAAodJo3b251X8u3bTsquX306FGdOXPGaDdr1kwlSpSw6RwPPfSQ8f/ExESFh4fbbX32dvToUVO5iPr162dYgzwzaRP52dm2bZup3bZtW6vHSlKFChV0zz33GO27dbSzU7x4cT388MNWz5M21m7dumXa1NRW7777runmwT333KNFixapVKlSOT7nrVu3dOnSJUVHR+v06dOmf35+fka/o0ePptvQMDcOHDhg2hiwadOmNn0e7dq1s7pv2lhxc3PL9p0Elho2bGh6R4i1sZJXUlJSFBcXp/Pnz6f7Hl64cMH0dY2KinL4eh599FGra+dbJret3aAwICDAVLomN6/h9rgG/vjjD1Pblht1ZcqUSZest1XaEkjZKezXAwCgaGBDSQAAUKh4e3ubastmp2TJkqb29evX7b0kSekTHuXLl9fp06dtOoflE8InT55MtwFmQREZGWlq165d26bxtvRP+7X18PBQsWLFbP7alixZ0rj5kHZjtaxUrFjR6ickJZmSY9Kd0hC23uCQpLCwMC1fvtxoly5dWosWLbLp5kFKSop27NihTZs26cCBA4qKitKtW7esHhsXFydfX1+b156RtJtISlK9evVsGm9t/4SEBFPJmXLlyunq1au6evWqTfP5+voaY6yNFUe5efOmfv75Z23ZskV//fWXTpw4odu3b1s1NjY21sGrS3/zMCuW5UdsGevr62vU6Le2lrijrgHLeM5o34es1K1bVz///LNNY+4qV66cqZ52Vgrj9QAAKJpIbgMAgELFMlmdHcu63NYmhmx17tw5U/vTTz/Vp59+mqtz5mbjMUezTJCkLclhjVKlSsnb2zvbTSVTUlJ04cIFo52UlKQnnnjCprksWbtBoWWyOjuW5QbSlgOw1rJlyzR79myj7e3trQULFqhKlSpWn2P37t1655130t2AsMX169ftlty2fNK2UqVKNo23fOI3MxcvXjR9zaOjo216yjUjtm5maU+rVq3SrFmzTCV5bOGoG3lp2XKNWL4W53SsNa/hjrwGLOPZ2vi8q3LlyjleU9myZa3uW9iuBwBA0UVyGwAAFCrW1D/OD474oz83ZS0czfKp0Jw8oezj45NtcjsmJsa0aaU9WPt1zetY+/777zV58mSj7eHhoTlz5tj0ZOjGjRs1evToHCXW07Ln19zyJk1WGwhmxNoke2G6BqdOnarPP/88V+ewZ2mZzOTmGrFmQ8SccPQ1kNt4trV/Wra8zham6wEAULSR3AYAAMgDuU2kZCQvklM5ZVmuIyebX1rzNXPE17Ug2rZtm8aOHWsk1FxdXTV9+nT94x//sPoc0dHRGjdunOlrVrZsWbVr106NGjVSxYoVFRgYKC8vL3l6epqSi+PGjdM333xjv08oC7YmNa3tX1hiZcOGDekS2yEhIWrbtq3q1q2r4OBg+fv7y9PTM911+Pjjj5s2OyxqnOUayAuF5XoAAIDkNgAAQB4oXbq0qT1z5kybNhpzNpYlBWyt73u3pm12LDcevO+++7Rp0yab5irowsPDNWjQIFMyasKECTZvnLlw4UJTTeEWLVpo1qxZps34MmNtHeOcyG3de2tjy/IabNq0qRYtWmTTXAVBWFiYqT1s2DC9+uqrViX5Hfl9dAZ5cQ1YxnNcXJzVdbBtmSe3Csv1AABAwXzfLgAAQCFjWQv1+PHj+bOQPGJZY/vQoUM2jT969KhVTxYWK1bMlEyKjo4uVE8kHj16VAMGDDCVZxkyZIi6d+9u87m2bNli/N/b21szZsywKqknyVTX3N4sr40TJ07YNN7aa8nf39/UPnbsmE3zFATHjx9XVFSU0W7cuLFee+01qxLb8fHxebKJZEGWF9dAbl/r8youC8P1AACARHIbAADAarmpAdugQQNTe+vWrbldToFWt25dU73dXbt2KTk52erxO3bssLpv2q9tUlKSdu7cafXYguzcuXPq16+faXPObt26afDgwTaf69atW6bkXOPGja2u7ZuQkKCIiAib57RW7dq1Te19+/bZNH7//v1W9fPx8VFISIjRjo6OdrqbTJaJ/+bNm1s9du/evQW6lJGj5dU1YBnP1sbnXeHh4Tb1z6nCcD0AACCR3AYAALBabupI16pVy/Q28H379tn8NLMz8fHxUZ06dYz2xYsX9fPPP1s1NjU1VV999ZXVczVt2tTUtmVsQXXt2jX169dPZ86cMY61bdtWb775Zo7OZ/nErrWbMErSd99959Cn4evUqSNPT0+jvXXrVps2u/vuu++s7uvssZKb72NhqhedE3l1DTRs2NDUXr9+vdXzXLlyRb/99pvV/XPL2a8HAAAkktsAAABWs0yGXLx40eqxrq6u6tatm9FOTU3V5MmTdfv2bbutr6B58cUXTe3333/fVF4jM8uXL9fff/9t9TwdOnQw1fjeuHGjtm/fbv1CC5hbt27plVde0ZEjR4xjjz76qN5//33T0/C2sKwDfPToUavGXb9+XR9//HGO5rSWp6en2rRpY7STkpI0f/58q8Zu2rRJf/31l9Vzde3aVe7u/7/t0NKlS3X48GHrF5vPLGvZW/t9PHDggL7//ntHLMlp5NU10LhxY1NZpj///FM//fSTVWPnzJmTp2WVnP16AABAIrkNAABgtapVq5ratj5h17dvX9PT2zt27NDrr7+uhIQEm85z5swZ/fLLLzaNyQ9PP/20KlWqZLRPnDihV155xVRmw9K6des0depUm+bx8/NTv379TMeGDh2q3bt323Se5ORk/fDDDzY9NWxvSUlJGjJkiKk0R506dRQWFpbunQO2KF68uO677z6jHRERkW1pnFu3bmnEiBGKjo7O8bzW6tGjh6nszxdffJFtQvDYsWOaNGmSTfNUqlRJnTp1MtoJCQkaMGCA6UaCNRITE7VmzRqbxtjDAw88YGqvXbs225tsp06d0rBhwwpVLfqcyKtrwNXVVS+99JLp2FtvvaVTp05lOe6HH37Q8uXLrZ7HHpz9egAAQCK5DQAAYLXg4GBVqFDBaO/du1ejRo3S//73Px09elSnT582/bN8KtvHx0ehoaGmJ+XWrVunjh07at26dVkmuS9cuKDVq1dr4MCBeuKJJ7Rhwwb7f4J25unpqWnTppmeNt65c6fatGmj0NBQ7dixQ0ePHlVERITWrl2rvn37asyYMbp9+7YaNmyooKAgq+fq37+/6S32sbGx6tmzpyZNmpTlE5pJSUnas2ePPvjgAz355JMaMmSI4uLicvYJ20FYWJh+/fVXox0QEKCJEyfq6tWr6eIrq39XrlxJd+6nnnrK1B42bJjWrVunlJQU0/HU1FRt27ZNXbp0MdZSpkwZB3y2/69OnTrq2rWr0b59+7aGDh2q+fPn69atW6a+ycnJ+v7779W9e3ddvnw53RO52Rk3bpyqV69utM+cOaPnnntOoaGhOnv2bKbj4uPjtW3bNk2ePFnNmjXT66+/btO89hAUFGQqe3Ht2jX17NkzwzrliYmJWrVqlV544QVFR0fL09PT6s0TC6u8ugZ69OhhuhFx4cIFde3aVRs3bkw3182bNzV79myNHDlSKSkpNsdzbjnz9QAAgCS5Z98FAAAAd/Xu3Vvvvvuu0V6/fn2mNVW3bNmie++913TskUce0bRp0/TGG28YNbujoqI0ZswYjR8/XjVq1FBgYKC8vb118+ZNxcTE6OjRo7p8+bLjPikHatiwod5//32NGzfO2FDy2rVrmjdvnubNm5fhmICAAIWGhpqSndlxd3fXv//9b7388svau3evpDtJ0OXLl2v58uUKCgpSSEiISpUqpZSUFMXFxencuXM6duxYgXqiNe2Gd9Kd0jfPP/+8zefp2LGj3nvvPdOxvn37avXq1cYccXFxGjNmjKZPn67atWvLx8dHMTEx+uuvv0xPA7dr107u7u4Or9k8ZswY7d+/XwcPHpR0Jzk7a9YszZ07V/Xq1ZO/v7+uX7+uP//803Q9vP322xoxYoTV85QoUULz589X3759jRsf8fHxRkxWqFBBVapUka+vr5KTk3X9+nVFR0fr5MmTNm2K6iijR49Wjx49jJtnR48eVZcuXVS5cmVVq1ZNHh4eunTpksLDw01lgN58803NnTvXqtJAhVVeXQMeHh6aMWOGXnrpJeOdIBcvXtSwYcPk7++vWrVqydfXV5cuXdK+ffsUHx8v6U7pq9GjR+e4tn5OOPv1AAAAyW0AAAAbdO/eXYcPH9bKlStzfI727durcuXKGjVqlE6cOGEcT0pKUnh4uFXnsKy9W5C1b99epUuX1sSJE7N9e3+TJk00c+ZMBQYGGgkf6U4CJju+vr5asmSJZs6cqS+++MKUeDl//rzOnz+f7Tm8vLxyVf6jIPPz89P8+fPVv39/U3L44sWLmZYAadeunaZNm5YnyTZvb28tXrxYAwYMMG5QSHdKQ/z+++/p+ru6umrcuHFq27atTcltSSpfvry+/vprTZw4Md2GlKdOncq2hISUf9fggw8+qHfffVdvvfWW6cbMsWPHdOzYsXT93dzcNG7cOHXu3Flz587Ny6UWOHl5DYSEhGjx4sV6+eWXTYnyS5cuZVhWys/PT3Pnzs2XhLEzXw8AAFCWBAAAwAYuLi6aNGmSVq1apZ49e6pBgwYqW7asPD09bTpPnTp1tGHDBn3wwQdq0KCBqVRJRlxdXVWzZk31799f33zzjcaPH5+bTyPPPfbYY/r+++81depUtWjRQsHBwfL09FTJkiVVrVo1dezYUYsXL9YXX3yhwMBASXdKi9xluZlnZjw8PDRu3Dht2rRJXbt2lb+/f7ZjSpUqpVatWum9997Tb7/9ZsxfGNWsWVNr167Vs88+Kw8Pjwz7uLi4qGHDhvrwww81Y8aMTPs5gp+fn5YvX64JEyaoXLlyGfZxc3NT06ZNtWzZMvXq1SvHc5UoUUIzZszQt99+q/bt21tVDiIwMFDt2rXThx9+aHPNfXvq1KmTli1bpiZNmmTax9PTU61btzZeq3BHXl4DNWrU0IYNG9SjR49Mb9B5e3urU6dOWrdunRo1apSjeezBma8HAEDR5pKampqa34sAAAAo6uLi4rR//36dO3dOMTExSkhIkLe3t0qVKqX77rtPVatWlY+PT34vM8+cPHlSTz75pNFu3bq1PvrooxydKyoqSpGRkbp69aquX78uNzc3+fj4qHz58qpSpYoqVKhg2sywqIiNjdUff/yhU6dO6ebNmypZsqQCAgJUu3btTBPLeSk1NVX79+/XkSNHdOXKFZUoUUKBgYGqV6+eQ25ApKSkKDIyUkeOHFFMTIxiY2Pl6ekpHx8fBQcHq2rVqipfvrzd582tM2fOaM+ePbpw4YJu376tMmXKKDAwUA8++GCRes3Iiby8BhITE7Vjxw6dPn1asbGxKlOmjIKCgtSoUaMCWQvdWa8HAEDRQ3IbAAAABc7q1atNT6ePGjVKAwYMyMcVAQAAAChoKEsCAACAAseypnn9+vXzZyEAAAAACiyS2wAAAChQli1bZtpYMzg4OF9r0QIAAAAomEhuAwAAwKEmTZqk77//XsnJyVn2S0lJ0eLFizVlyhTT8Z49e8rVlV9bAQAAAJi55/cCAAAAULgdOXJEy5cvV0BAgFq1aqV69eqpcuXK8vPzU2Jioi5duqS9e/dq3bp1On78uGlsgwYN1KNHj/xZOAAAAIACjQ0lAQAA4FA9evTQzp07bR73wAMPaMGCBQoKCnLAqgAAAAA4O97fCQAAAIcqXbq0Tf2LFSum7t27a8WKFSS2AQAAAGSKJ7cBAADgcH///be2b9+u/fv36/jx4zp37pxu3Lih5ORk+fr6qlSpUqpevboaN26s1q1bKzAwML+XDAAAAKCAI7kNAAAAAAAAAHA6lCUBAAAAAAAAADgdktsAAAAAAAAAAKdDchsAAAAAAAAA4HRIbgMAAAAAAAAAnA7JbQAAAAAAAACA0yG5DQAAAAAAAABwOiS3AQAAAAAAAABOh+Q2AAAAAAAAAMDpkNwGAAAAAAAAADgdktsAAAAAAAAAAKdDchsAAAAAAAAA4HRIbgMAAAAAAAAAnA7JbQAAAAAAAACA0yG5DQAAAAAAAABwOiS3AQAAAAAAAABOh+Q2AAAAAAAAAMDpkNwGAAAAAAAAADgdktsAAAAAAAAAAKdDchsAAAAAAAAA4HT+DxFn6v5vHPGFAAAAAElFTkSuQmCC",
"text/plain": [
"
"
]
},
"metadata": {
"image/png": {
"height": 491,
"width": 731
}
},
"output_type": "display_data"
}
],
"source": [
"plt.plot(x, y, \"x\")\n",
"plt.xlabel(\"Intelligenza della madre\")\n",
"_ = plt.ylabel(\"Intelligenza del bambino\")"
]
},
{
"cell_type": "markdown",
"id": "69f308c9-f235-4f8a-b175-9ae21ffd5f58",
"metadata": {},
"source": [
"Calcoliamo i coefficienti del modello \n",
"\n",
"$$\n",
"y_i = \\beta_0 + \\beta_1 x_i + e_i\n",
"$$\n",
"\n",
"con il metodo della massima verosimiglianza. A questo scopo usiamo la funzione `linear_regression()` del pacchetto `pingouin`."
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "aaee27d5-d0be-4635-8697-ab6f981d1783",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
"
]
},
"metadata": {
"image/png": {
"height": 491,
"width": 731
}
},
"output_type": "display_data"
}
],
"source": [
"plt.plot(x, yhat)\n",
"plt.plot(x, y, \"x\")\n",
"plt.xlabel(\"Intelligenza della madre\")\n",
"plt.ylabel(\"Intelligenza predetta del bambino, $\\hat{y}$\")\n",
"_ = plt.title(\"Retta di regressione\")"
]
},
{
"cell_type": "markdown",
"id": "6f44a1ad-3de7-4530-a850-2bb3d09c508e",
"metadata": {},
"source": [
"### Interpretazione\n",
"\n",
"Il coefficiente $\\beta_0$ indica il valore atteso della distribuzione condizionata $p(y_i \\mid x_i = 0)$. Nel caso presente, indica la media del quoziente d'intelligenza del bambino quando la madre ha un quoziente di intelligenza uguale a 0. Ovviamente questa non è un'informazione di una qualche importanza pratica. Vedremo come migliorare l'interpretabilità dell'intercetta usando una parametrizzazione alternativa dei dati.\n",
"\n",
"Il coefficiente $\\beta_1$ indica il cambiamento del valore atteso della variabile dipendente quando la variabile indipendente aumenta di un'unità. Nel caso presente abbiamo che il punteggio del quoziente di intelligenza del bambino aumenta in media di 0.61 punti quando il quoziente di intelligenza della madre aumenta di un punto. In una parametrizzazione alternativa, standardizzando la variabile indipendente, $\\beta_1$ indicherebbe di quanto varia in media il quoziente di intelligenza del bambino quando il quoziente di intelligenza della madre aumenta di una deviazione standard."
]
},
{
"cell_type": "markdown",
"id": "bc08a6f7-e13f-41c6-af96-54b5b956757e",
"metadata": {},
"source": [
"## Residui"
]
},
{
"cell_type": "markdown",
"id": "7801610a-55de-4849-9d6e-9e82415f06d3",
"metadata": {},
"source": [
"Calcoliamo i residui\n",
"\n",
"$$\n",
"e_i = y_i - \\hat{y}_i\n",
"$$"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "00ca8233-fc5c-45fe-9793-8c0e5dfaa1db",
"metadata": {},
"outputs": [],
"source": [
"e = y - yhat"
]
},
{
"cell_type": "markdown",
"id": "1bb67ebe-58ff-4bea-9caa-ba8ef1887d65",
"metadata": {},
"source": [
"La retta di regressine calcolata con il metodo della massima verosimiglianza ha le seguenti proprietà:\n",
"\n",
"- il valore atteso dei residui è zero,\n",
"- i residui sono incorrelati con i valori predetti."
]
},
{
"cell_type": "markdown",
"id": "35cacdcb-5972-45fd-b7d1-0c1edc85b137",
"metadata": {},
"source": [
"Valutiamo la media dei residui:"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "44a4e904-5e6a-49d7-9ee7-e696cd1aa6a2",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"-1.5455123100404022e-14"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"np.mean(e)"
]
},
{
"cell_type": "markdown",
"id": "f2c87468-711f-46a0-a35a-dc1a5cd2e0b2",
"metadata": {},
"source": [
"Calcoliamo la correlazione tra i residui $e$ e i valori predetti $\\hat{y}$:"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "f4459130-9eb0-4786-b428-e96c620e2bd3",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"1.6170164072555654e-16"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"np.corrcoef(e, yhat)[0, 1]"
]
},
{
"cell_type": "markdown",
"id": "c09fce18-e330-4980-a9cb-a4db75df0c78",
"metadata": {},
"source": [
"Il modello di regressione bivariato \n",
"\n",
"$$\n",
"y_i = \\beta_0 + \\beta_1 x_i + e_i\n",
"$$\n",
"\n",
"scompone la variabile dipendente $y_i$ in due componenti tra loro incorrelate, una componente deterministica\n",
"\n",
"$$\n",
"\\hat{y}_i = \\beta_0 + \\beta_1 x_i \n",
"$$\n",
"\n",
"e una componente aleatoria\n",
"\n",
"$$\n",
"e_i = y_i - \\hat{y}_i.\n",
"$$"
]
},
{
"cell_type": "code",
"execution_count": 21,
"id": "1abcebf1-87bc-4e49-b6f3-7c4b89c11617",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
x
\n",
"
y
\n",
"
yhat
\n",
"
e
\n",
"
sum
\n",
"
\n",
" \n",
" \n",
"
\n",
"
0
\n",
"
121.117529
\n",
"
65
\n",
"
99.678390
\n",
"
-34.678390
\n",
"
65.0
\n",
"
\n",
"
\n",
"
1
\n",
"
89.361882
\n",
"
98
\n",
"
80.308253
\n",
"
17.691747
\n",
"
98.0
\n",
"
\n",
"
\n",
"
2
\n",
"
115.443165
\n",
"
85
\n",
"
96.217173
\n",
"
-11.217173
\n",
"
85.0
\n",
"
\n",
"
\n",
"
3
\n",
"
99.449639
\n",
"
83
\n",
"
86.461529
\n",
"
-3.461529
\n",
"
83.0
\n",
"
\n",
"
\n",
"
4
\n",
"
92.745710
\n",
"
115
\n",
"
82.372303
\n",
"
32.627697
\n",
"
115.0
\n",
"
\n",
"
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
\n",
"
\n",
"
429
\n",
"
84.877412
\n",
"
94
\n",
"
77.572841
\n",
"
16.427159
\n",
"
94.0
\n",
"
\n",
"
\n",
"
430
\n",
"
92.990392
\n",
"
76
\n",
"
82.521552
\n",
"
-6.521552
\n",
"
76.0
\n",
"
\n",
"
\n",
"
431
\n",
"
94.859708
\n",
"
50
\n",
"
83.661788
\n",
"
-33.661788
\n",
"
50.0
\n",
"
\n",
"
\n",
"
432
\n",
"
96.856624
\n",
"
88
\n",
"
84.879856
\n",
"
3.120144
\n",
"
88.0
\n",
"
\n",
"
\n",
"
433
\n",
"
91.253336
\n",
"
70
\n",
"
81.461993
\n",
"
-11.461993
\n",
"
70.0
\n",
"
\n",
" \n",
"
\n",
"
434 rows × 5 columns
\n",
"
"
],
"text/plain": [
" x y yhat e sum\n",
"0 121.117529 65 99.678390 -34.678390 65.0\n",
"1 89.361882 98 80.308253 17.691747 98.0\n",
"2 115.443165 85 96.217173 -11.217173 85.0\n",
"3 99.449639 83 86.461529 -3.461529 83.0\n",
"4 92.745710 115 82.372303 32.627697 115.0\n",
".. ... ... ... ... ...\n",
"429 84.877412 94 77.572841 16.427159 94.0\n",
"430 92.990392 76 82.521552 -6.521552 76.0\n",
"431 94.859708 50 83.661788 -33.661788 50.0\n",
"432 96.856624 88 84.879856 3.120144 88.0\n",
"433 91.253336 70 81.461993 -11.461993 70.0\n",
"\n",
"[434 rows x 5 columns]"
]
},
"execution_count": 21,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df = pd.DataFrame()\n",
"df[\"x\"] = x\n",
"df[\"y\"] = y\n",
"df[\"yhat\"] = yhat\n",
"df[\"e\"] = e\n",
"df[\"sum\"] = df[\"yhat\"] + df[\"e\"]\n",
"df"
]
},
{
"cell_type": "markdown",
"id": "1546346d-8cf3-47f2-921a-724b19ad77d1",
"metadata": {},
"source": [
"## Errore Standard della Regressione\n",
"\n",
"L'errore standard della regressione rappresenta la stima della deviazione standard dei residui nell'intera popolazione. Questo parametro può essere calcolato attraverso la formula:\n",
"\n",
"$$\n",
"\\hat{\\sigma}_e = \\sqrt{\\frac{\\sum_i (e_i - \\bar{e})^2}{n-2}},\n",
"$$\n",
"\n",
"dove $ \\bar{e} $ indica la media dei residui, che teoricamente è zero dato che si assume che la media degli errori sia zero.\n",
"\n",
"Il denominatore \"n-2\" deriva dalla perdita di due gradi di libertà, necessaria per la stima dei due coefficienti, $ \\beta_0 $ (intercetta) e $ \\beta_1 $ (pendenza), che sono utilizzati per calcolare le stime previste $ \\hat{y}_i = \\beta_0 + \\beta_1 x_i $. Questi gradi di libertà vengono sottratti perché ciascun parametro stimato consuma un grado di libertà dal totale disponibile."
]
},
{
"cell_type": "markdown",
"id": "833ae928-4a62-4ea7-befa-2687e017025d",
"metadata": {},
"source": [
"Nel caso dell'esempio, la numerosità campionaria è"
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "2e603385-0173-45fb-8836-6b29c97a0fcf",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"434"
]
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"n = len(x)\n",
"n"
]
},
{
"cell_type": "markdown",
"id": "b2bc78d3-0281-49c7-b341-1e89398009ab",
"metadata": {},
"source": [
"L'errore standard della regressione diventa"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "ab4c7794-0d11-4798-9649-be68483c77a2",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"18.266122792299274"
]
},
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"np.sqrt(np.sum(e**2) / (n-2))"
]
},
{
"cell_type": "markdown",
"id": "e356b88e-f239-4bbb-928b-08682fc7fb5f",
"metadata": {},
"source": [
"Questo valore indica che, in media, nella popolazione la distanza tra i valori osservati e la retta di regressione è di 18.3 punti."
]
},
{
"cell_type": "markdown",
"id": "fda59109-a3eb-40ec-bb51-ff0ca95f3179",
"metadata": {},
"source": [
"Come discusso da {cite}`gelman2020regression`, la radice quadrata media dei residui, $ \\frac{1}{n} \\sum_{i=1}^n (y_i - (\\hat{a} + \\hat{b}x_i))^2 $, tende a sottostimare la deviazione standard $\\sigma$ dell'errore nel modello di regressione. Questa sottostima è spesso il risultato di un sovradimensionamento, dato che i parametri $a$ e $b$ sono stimati utilizzando gli stessi $n$ punti dati usati anche per calcolare i residui.\n",
"\n",
"La validazione incrociata rappresenta un approccio alternativo per valutare l'errore predittivo che evita alcuni dei problemi legati al sovradimensionamento. La versione più semplice della validazione incrociata è l'approccio leave-one-out, in cui il modello è adattato $n$ volte, escludendo ogni volta un punto dati, adattando il modello ai rimanenti $n-1$ punti dati, e utilizzando questo modello adattato per predire l'osservazione esclusa:\n",
"- Per $i = 1, \\ldots, n$:\n",
" - Adatta il modello $y = a + bx + \\text{errore}$ ai $n-1$ punti dati $(x,y)_j, j \\neq i$. Denomina i coefficienti di regressione stimati come $\\hat{a}_{-i}, \\hat{b}_{-i}$.\n",
" - Calcola il residuo validato incrociato, $ r_{\\text{CV}} = y_i - (\\hat{a}_{-i} + \\hat{b}_{-i} x_i) $.\n",
" - Calcola la stima di $\\sigma_{\\text{CV}} = \\frac{1}{n} \\sum_{i=1}^n r_{\\text{CV}}^2$.\n",
"\n",
"Per fare un esempio, eseguiamo i passaggi sopra descritti per il modello dell'intelligenza del bambino predetta dall'intelligenza della madre. "
]
},
{
"cell_type": "code",
"execution_count": 24,
"id": "709129b6-114f-427b-ac28-08d97d771f7f",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Stima di σ_CV: 18.306662828465665\n"
]
}
],
"source": [
"# Inizializzazione di un modello di regressione lineare\n",
"model = LinearRegression()\n",
"\n",
"# Array per salvare i residui cross-validated\n",
"residuals_cv = []\n",
"\n",
"# Loop per la validazione incrociata leave-one-out\n",
"for i in range(len(df)):\n",
" # Dati di training escludendo l'i-esimo punto\n",
" X_train = df.loc[df.index != i, [\"x\"]]\n",
" y_train = df.loc[df.index != i, \"y\"]\n",
"\n",
" # Dati di test\n",
" X_test = df.loc[[i], [\"x\"]]\n",
" y_test = df.loc[i, \"y\"]\n",
"\n",
" # Addestramento del modello\n",
" model.fit(X_train, y_train)\n",
"\n",
" # Predizione sull'i-esimo punto\n",
" y_pred = model.predict(X_test)\n",
"\n",
" # Calcolo del residuo validato incrociato\n",
" residual_cv = y_test - y_pred[0]\n",
" residuals_cv.append(residual_cv**2)\n",
"\n",
"# Calcolo di sigma_cv\n",
"sigma_cv = np.sqrt(np.mean(residuals_cv))\n",
"\n",
"print(\"Stima di σ_CV:\", sigma_cv)"
]
},
{
"cell_type": "markdown",
"id": "b944c277-fd23-4d69-b4fb-299fea5af080",
"metadata": {},
"source": [
"Nel caso dei dati analizzati, si osserva che la stima ottenuta attraverso la validazione incrociata è leggermente superiore rispetto a quella calcolata usando la formula \n",
"$\n",
"\\hat{\\sigma}_e = \\sqrt{\\frac{\\sum_i (e_i - \\bar{e})^2}{n-2}}\n",
"$.\n",
"Questo incremento, sebbene minimo, riflette le differenze metodologiche tra i due approcci di stima dell'errore standard."
]
},
{
"cell_type": "markdown",
"id": "e66b72ea-2723-4371-b862-61929c594233",
"metadata": {},
"source": [
"## Parametrizzazione Alternativa\n",
"\n",
"Per consentire una migliore interpretazione dell'intercetta, centriamo i valori della variabile indipendente."
]
},
{
"cell_type": "code",
"execution_count": 24,
"id": "6d8e85ec-50a9-443b-aded-6e9bef058a82",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"7.858537169696961e-16"
]
},
"execution_count": 24,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"xc = x - np.mean(x)\n",
"np.mean(xc)"
]
},
{
"cell_type": "markdown",
"id": "1b9200ba-2cb2-492f-865d-e143a65c067b",
"metadata": {},
"source": [
"Eseguiamo l'analisi di regressione."
]
},
{
"cell_type": "code",
"execution_count": 25,
"id": "728ae6b2-a7db-4714-bd87-a6559000f8ec",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
names
\n",
"
coef
\n",
"
se
\n",
"
T
\n",
"
pval
\n",
"
r2
\n",
"
adj_r2
\n",
"
CI[2.5%]
\n",
"
CI[97.5%]
\n",
"
\n",
" \n",
" \n",
"
\n",
"
0
\n",
"
Intercept
\n",
"
86.80
\n",
"
0.88
\n",
"
98.99
\n",
"
0.0
\n",
"
0.2
\n",
"
0.2
\n",
"
85.07
\n",
"
88.52
\n",
"
\n",
"
\n",
"
1
\n",
"
mom_iq
\n",
"
0.61
\n",
"
0.06
\n",
"
10.42
\n",
"
0.0
\n",
"
0.2
\n",
"
0.2
\n",
"
0.49
\n",
"
0.72
\n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" names coef se T pval r2 adj_r2 CI[2.5%] CI[97.5%]\n",
"0 Intercept 86.80 0.88 98.99 0.0 0.2 0.2 85.07 88.52\n",
"1 mom_iq 0.61 0.06 10.42 0.0 0.2 0.2 0.49 0.72"
]
},
"execution_count": 25,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"lm2 = pg.linear_regression(xc, y)\n",
"lm2.round(2)"
]
},
{
"cell_type": "markdown",
"id": "9efdc073-d20f-494e-a08c-51ea28f5841a",
"metadata": {},
"source": [
"Notiamo che la stima della pendenza della retta di regressione è rimasta immutata, mentre cambia il coefficiente $\\beta_0$. Nel caso in cui la variabile indipendente sia centrata, il coefficiente $\\beta_0$ rappresenta il valore atteso della variabile dipendente quando la variabile indipendente assume il suo valore medio.\n",
"\n",
"Nel caso presente, il valore 86.80 indica la media del quoziente di intelligenza del bambino quando il quoziente di intelligenza della madre assume il valore medio nel campione."
]
},
{
"cell_type": "markdown",
"id": "55f27eac-fbe1-4216-80a8-024bc6af78cd",
"metadata": {},
"source": [
"Adesso standardizziamo sia la variabile dipendente che la variabile indipendente."
]
},
{
"cell_type": "code",
"execution_count": 28,
"id": "81850fff-3f0c-4314-82c3-23f66b10cce2",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"4.9115857310606007e-17 0.9999999999999999\n"
]
}
],
"source": [
"x_mean = np.mean(x)\n",
"x_std = np.std(x, ddof=0)\n",
"\n",
"# Standardizzazione\n",
"zx = (x - x_mean) / x_std\n",
"\n",
"print(np.mean(zx), np.std(zx))"
]
},
{
"cell_type": "code",
"execution_count": 27,
"id": "e62a6a6e-45d0-4470-8d39-338d5ea60b14",
"metadata": {},
"outputs": [],
"source": [
"y_mean = np.mean(y)\n",
"y_std = np.std(y, ddof=0)\n",
"\n",
"# Standardizzazione\n",
"zy = (y - y_mean) / y_std"
]
},
{
"cell_type": "code",
"execution_count": 29,
"id": "20b71daf-8570-41fd-8c0b-696349f150b2",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
names
\n",
"
coef
\n",
"
se
\n",
"
T
\n",
"
pval
\n",
"
r2
\n",
"
adj_r2
\n",
"
CI[2.5%]
\n",
"
CI[97.5%]
\n",
"
\n",
" \n",
" \n",
"
\n",
"
0
\n",
"
Intercept
\n",
"
-0.00
\n",
"
0.04
\n",
"
-0.00
\n",
"
1.0
\n",
"
0.2
\n",
"
0.2
\n",
"
-0.08
\n",
"
0.08
\n",
"
\n",
"
\n",
"
1
\n",
"
mom_iq
\n",
"
0.45
\n",
"
0.04
\n",
"
10.42
\n",
"
0.0
\n",
"
0.2
\n",
"
0.2
\n",
"
0.36
\n",
"
0.53
\n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" names coef se T pval r2 adj_r2 CI[2.5%] CI[97.5%]\n",
"0 Intercept -0.00 0.04 -0.00 1.0 0.2 0.2 -0.08 0.08\n",
"1 mom_iq 0.45 0.04 10.42 0.0 0.2 0.2 0.36 0.53"
]
},
"execution_count": 29,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"lm3 = pg.linear_regression(zx, zy)\n",
"lm3.round(2)"
]
},
{
"cell_type": "markdown",
"id": "22bb3971-dd03-479d-809e-083246f8714b",
"metadata": {},
"source": [
"Dopo aver standardizzato entrambe le variabili, i coefficienti di regressione possono essere interpretati nel seguente modo:\n",
"\n",
"- **$\\beta_0$ = 0**: Questo si verifica perché la retta di regressione, calcolata attraverso il metodo dei minimi quadrati (ML), interseca il punto delle medie delle variabili standardizzate, ovvero $(\\bar{X}, \\bar{Y})$.\n",
"- **$\\beta_1$**: Rappresenta la variazione media della variabile dipendente, espressa in termini di deviazioni standard, per ogni aumento di una deviazione standard nella variabile indipendente."
]
},
{
"cell_type": "markdown",
"id": "5f36abbe-cd03-4090-9d8f-7476314b64d6",
"metadata": {},
"source": [
"## Teorema della scomposizione della devianza\n",
"\n",
"Il teorema della scomposizione della devianza nel modello di regressione lineare ci aiuta a comprendere quanto bene il modello si adatta ai dati. Esso scompone la variazione totale dei dati in componenti attribuibili all'effetto del modello e alla variazione residua non spiegata dal modello. \n",
"\n",
"### Formulazione del Teorema\n",
"\n",
"Dato un set di dati $ y_1, y_2, \\dots, y_n $, dove $ y_i $ rappresenta l'i-esimo valore della variabile dipendente, e $ \\bar{y} $ è la media campionaria di $ y $, la devianza totale (o variazione totale) dei dati può essere scomposta nel seguente modo:\n",
"\n",
"1. **Devianza Totale (VT)**: Misura la dispersione totale dei dati intorno alla loro media.\n",
" $$\n",
" DT = \\sum_{i=1}^n (y_i - \\bar{y})^2\n",
" $$\n",
"\n",
"2. **Devianza Spiegata (VS)**: Misura quanto della variazione totale è spiegata dal modello di regressione.\n",
" $$\n",
" DS = \\sum_{i=1}^n (\\hat{y}_i - \\bar{y})^2\n",
" $$\n",
" dove $ \\hat{y}_i $ è il valore predetto dalla regressione per l'i-esimo osservazione.\n",
"\n",
"3. **Devianza Residua (VR)**: Misura la variazione dei dati che il modello non riesce a spiegare.\n",
" $$\n",
" DR = \\sum_{i=1}^n (y_i - \\hat{y}_i)^2\n",
" $$\n",
"\n",
"### Teorema di Scomposizione della Devianza\n",
"\n",
"Il teorema afferma che la variazione totale $ DT $ è uguale alla somma della variazione spiegata $ DS $ e della variazione residua $ DR $:\n",
"\n",
"$$\n",
"DT = DS + DR\n",
"$$\n",
"\n",
"### Dimostrazione\n",
"\n",
"La dimostrazione di questa identità si basa sul principio di ortogonalità dei residui e delle stime. I residui $ y_i - \\hat{y}_i $ sono ortogonali alle predizioni $ \\hat{y}_i - \\bar{y} $ nel contesto della regressione lineare. Matematicamente, ciò è espresso da:\n",
"\n",
"$$\n",
"\\sum_{i=1}^n (\\hat{y}_i - \\bar{y})(y_i - \\hat{y}_i) = 0\n",
"$$\n",
"\n",
"Utilizzando l'ortogonalità, possiamo scrivere la variazione totale come segue:\n",
"\n",
"$$\n",
"\\begin{align*}\n",
"DT &= \\sum_{i=1}^n (y_i - \\bar{y})^2 \\\\\n",
" &= \\sum_{i=1}^n [(y_i - \\hat{y}_i) + (\\hat{y}_i - \\bar{y})]^2 \\\\\n",
" &= \\sum_{i=1}^n (y_i - \\hat{y}_i)^2 + 2\\sum_{i=1}^n (y_i - \\hat{y}_i)(\\hat{y}_i - \\bar{y}) + \\sum_{i=1}^n (\\hat{y}_i - \\bar{y})^2 \\\\\n",
" &= DR + 2 \\cdot 0 + DS \\\\\n",
" &= DR + DS\n",
"\\end{align*}\n",
"$$\n",
"\n",
"Questa dimostrazione chiarisce che la variazione totale è esattamente uguale alla somma della devianza spiegata dal modello e quella non spiegata (residua). Il coefficiente di determinazione $ R^2 $, che è definito come $ R^2 = \\frac{DS}{DT} $, offre una misura della proporzione della variazione totale spiegata dal modello."
]
},
{
"cell_type": "markdown",
"id": "fb8bda54-f377-4ac3-8dcf-accf30c6298f",
"metadata": {},
"source": [
"Applichiamo ora il teorema di scomposizione della devianza ai dati in esame. Usando `pg.linear_regression(x, y)` calcoliamo il coefficiente di determinazione."
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "5dfc91d3-4fb8-41f1-b52c-190f0ff6850e",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"0.20095123075855126\n"
]
}
],
"source": [
"r_squared = lm[\"r2\"][0] # R-squared del modello\n",
"print(r_squared)"
]
},
{
"cell_type": "markdown",
"id": "82c44105-6b93-435a-9062-9e8d297ad097",
"metadata": {},
"source": [
"Calcoliamo la devianza totale."
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "e129b8d2-9011-4128-9ce0-f5250351390c",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"180386.15668202768\n"
]
}
],
"source": [
"DT = np.sum((y - np.mean(y))**2)\n",
"print(DT)"
]
},
{
"cell_type": "markdown",
"id": "49ba8d51-33b4-486d-8176-41250ff53888",
"metadata": {},
"source": [
"Calcoliamo la devianza spiegata."
]
},
{
"cell_type": "code",
"execution_count": 19,
"id": "8c171dac-6ec5-4cf2-93e4-87a7a7c54fea",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"36248.82019705826\n"
]
}
],
"source": [
"DS = np.sum((yhat - np.mean(y)) ** 2)\n",
"print(DS)"
]
},
{
"cell_type": "markdown",
"id": "ede086a0-8766-4138-a4b4-692e2ccdbe2e",
"metadata": {},
"source": [
"Calcoliamo la devianza residua."
]
},
{
"cell_type": "code",
"execution_count": 20,
"id": "06776e1e-9d97-44c3-b71a-918337de389c",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"144137.33648496936\n"
]
}
],
"source": [
"DR = np.sum((y - yhat) ** 2)\n",
"print(DR)"
]
},
{
"cell_type": "markdown",
"id": "c9f9672e-2f15-493b-b77f-e6d42ffc9772",
"metadata": {},
"source": [
"La devianza totale è la somma della devianza spiegata e della devianza residua."
]
},
{
"cell_type": "code",
"execution_count": 21,
"id": "287c2a09-7e25-4290-8aca-4772fece8df2",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"180386.15668202762"
]
},
"execution_count": 21,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"DS + DR"
]
},
{
"cell_type": "markdown",
"id": "00b69089-8dff-49da-ba32-d1c157bc1186",
"metadata": {},
"source": [
"Il coefficiente di determinazione è il rapporto tra la devianza spiegata e la devianza totale."
]
},
{
"cell_type": "code",
"execution_count": 22,
"id": "11d4f4e9-1156-49a8-86fe-9834b91e86b7",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"0.2009512307585509\n"
]
}
],
"source": [
"Rsq = DS / DT\n",
"print(Rsq)"
]
},
{
"cell_type": "markdown",
"id": "aea9371d-dd21-4971-ac15-5fad19ef205d",
"metadata": {},
"source": [
"## Inferenza\n",
"\n",
"Esistono due principali approcci di inferenza statistica applicabili ai modelli di regressione: l'inferenza frequentista e l'inferenza bayesiana.\n",
"\n",
"### Inferenza Frequentista\n",
"L'inferenza frequentista stabilisce le sue basi analizzando la distribuzione campionaria delle stime dei coefficienti di regressione e calcolando l'errore standard associato. Questo metodo si focalizza prevalentemente sul test delle ipotesi e sulla costruzione degli intervalli di fiducia. Tuttavia, il test dell'ipotesi nulla è spesso criticato nel dibattito metodologico contemporaneo per la sua rigidezza e limitazioni interpretative. Analogamente, gli intervalli di fiducia possono risultare contro-intuitivi e di limitata utilità pratica, dato che richiedono un'interpretazione che non riflette direttamente la probabilità che il parametro si trovi all'interno dell'intervallo specificato.\n",
"\n",
"### Inferenza Bayesiana\n",
"Contrariamente all'approccio frequentista, l'inferenza bayesiana offre un quadro più flessibile e intuitivo per l'analisi statistica. Attraverso l'utilizzo degli intervalli di credibilità, l'inferenza bayesiana permette di incorporare conoscenze pregresse e aggiornarle alla luce di nuovi dati. Gli intervalli di credibilità forniscono una stima diretta della probabilità che un parametro si trovi all'interno di un certo intervallo, basata sulla distribuzione a posteriori. Questo rende l'interpretazione più diretta e gli intervalli di credibilità risultano essere strumenti praticamente più utili nell'inferenza statistica.\n",
"\n",
"Per queste ragioni, molti ricercatori e analisti preferiscono sviluppare inferenze tramite l'approccio bayesiano, specialmente quando le situazioni richiedono una maggiore flessibilità interpretativa e l'integrazione di informazioni pregresse nel modello analitico."
]
},
{
"cell_type": "markdown",
"id": "d14e5107-b851-4db4-a9e8-ef65fc69e168",
"metadata": {},
"source": [
"## Informazioni sull'Ambiente di Sviluppo"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "0c20e39a-54e4-4b23-88c7-0287d6819150",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Last updated: Wed May 22 2024\n",
"\n",
"Python implementation: CPython\n",
"Python version : 3.12.3\n",
"IPython version : 8.24.0\n",
"\n",
"Compiler : Clang 16.0.6 \n",
"OS : Darwin\n",
"Release : 23.4.0\n",
"Machine : arm64\n",
"Processor : arm\n",
"CPU cores : 8\n",
"Architecture: 64bit\n",
"\n",
"scipy : 1.13.0\n",
"numpy : 1.26.4\n",
"seaborn : 0.13.2\n",
"pandas : 2.2.2\n",
"matplotlib: 3.8.4\n",
"arviz : 0.18.0\n",
"pingouin : 0.5.4\n",
"\n",
"Watermark: 2.4.3\n",
"\n"
]
}
],
"source": [
"%load_ext watermark\n",
"%watermark -n -u -v -iv -w -m "
]
}
],
"metadata": {
"kernelspec": {
"display_name": "pymc_env",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.3"
}
},
"nbformat": 4,
"nbformat_minor": 2
}